scholarly journals Cross frequency coupling in next generation inhibitory neural mass models

2019 ◽  
Author(s):  
Andrea Ceni ◽  
Simona Olmi ◽  
Alessandro Torcini ◽  
David Angulo-Garcia

Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive processes in the brain. In this study we consider a neural mass model, rigorously obtained from the microscopic dynamics of an inhibitory spiking network with exponential synapses, able to autonomously generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation, and their frequencies are controlled by the synaptic time scale, the synaptic coupling and the excitability of the neural population. Furthermore, we show that two inhibitory populations in a master-slave configuration with different synaptic time scales can display various collective dynamical regimes: namely, damped oscillations towards a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when bidirectionally coupled the two inhibitory populations can exhibit different types of θ-γ cross-frequency couplings (CFCs): namely, phase-phase and phase-amplitude CFC. The coupling between θ and γ COs is enhanced in presence of a external θ forcing, reminiscent of the type of modulation induced in Hippocampal and Cortex circuits via optogenetic drive.In healthy conditions, the brain’s activity reveals a series of intermingled oscillations, generated by large ensembles of neurons, which provide a functional substrate for information processing. How single neuron properties influence neuronal population dynamics is an unsolved question, whose solution could help in the understanding of the emergent collective behaviors arising during cognitive processes. Here we consider a neural mass model, which reproduces exactly the macroscopic activity of a network of spiking neurons. This mean-field model is employed to shade some light on an important and ubiquitous neural mechanism underlying information processing in the brain: the θ-γ cross-frequency coupling. In particular, we will explore in detail the conditions under which two coupled inhibitory neural populations can generate these functionally relevant coupled rhythms.

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0173776 ◽  
Author(s):  
Mojtaba Chehelcheraghi ◽  
Cees van Leeuwen ◽  
Erik Steur ◽  
Chie Nakatani

Author(s):  
Sheikh Md. Rabiul Islam ◽  
◽  
Md. Shakibul Islam ◽  

The electroencephalogram (EEG) is an electrophysiological monitoring strategy that records the spontaneous electrical movement of the brain coming about from ionic current inside the neurons of the brain. The importance of the EEG signal is mainly the diagnosis of different mental and brain neurodegenerative diseases and different abnormalities like seizure disorder, encephalopathy, dementia, memory problem, sleep disorder, stroke, etc. The EEG signal is very useful for someone in case of a coma to determine the level of brain activity. So, it is very important to study EEG generation and analysis. To reduce the complexity of understanding the pathophysiological mechanism of EEG signal generation and their changes, different simulation-based EEG modeling has been developed which are based on anatomical equivalent data. In this paper, Instead of a detailed model a neural mass model has been used to implement different simulation-based EEG models for EEG signal generation which refers to the simplified and straightforward method. This paper aims to introduce obtained EEG signals of own implementation of the Lopes da Silva model, Jansen-Rit model, and Wendling model in Simulink and to compare characteristic features with real EEG signals and better understanding the EEG abnormalities especially the seizure-like signal pattern.


2017 ◽  
Vol 29 (2) ◽  
pp. 485-501 ◽  
Author(s):  
Xian Liu ◽  
Jing Gao ◽  
Guan Wang ◽  
Zhi-Wang Chen

The development of control technology for the brain is of potential significance to the prevention and treatment of neuropsychiatric disorders and the improvement of humans’ mental health. A controllability analysis of the brain is necessary to ensure the feasibility of the brain control. In this letter, we investigate the influences of dynamical parameters on the controllability in the neural mass model by using controllability indices as quantitative indicators. The indices are obtained by computing Lie brackets and condition numbers of the system model. We show how controllability changes with important parameters of our dynamical (neuronal) model. Our results suggest that the underlying dynamical parameters have certain ranges with better controllability. We hope it can play potential roles in therapy for brain nervous disorder disease.


2021 ◽  
Author(s):  
Saba Tabatabaee ◽  
Fariba Bahrami ◽  
Mahyar Janahmadi

Increasing evidence has shown that excitatory neurons in the brain play a significant role in seizure generation. However, spiny stellate cells are cortical excitatory non-pyramidal neurons in the brain which their basic role in seizure occurrence is not well understood. In the present research, we study the critical role of spiny stellate cells or the excitatory interneurons (EI), for the first time, in epileptic seizure generation using an extended neural mass model introduced originally by Taylor and colleagues in 2014. Applying bifurcation analysis on this modified model, we investigated the rich dynamics corresponding to the epileptic seizure onset and transition between interictal and ictal states due to the EI. Our results indicate that the transition is described by a supercritical Hopf bifurcation which shapes the preictal activity in the model and suggests why before seizure onset, the amplitude and frequency of neural activities increase gradually. Moreover, we showed that 1) the altered function of GABAergic and glutamatergic receptors of EI can cause seizure, and 2) the pathway between the thalamic relay nucleus and EI facilitates the transition from interictal to the ictal activity by decreasing the preictal period. Thereafter, we considered both sensory and cortical periodic inputs to drive the model responses to various harmonic stimulations. Our results from the bifurcation analysis of the model suggest that the initial stage of the brain might be the main cause for the transition between interictal and ictal states as the stimulus frequency changes. The extended thalamocortical model shows also that the amplitude jump phenomenon and nonlinear resonance behavior result from the preictal stage of the brain. These results can be considered as a step forward to a deeper understanding of the mechanisms underlying the transition from brain normal activities to epileptic activities.


2021 ◽  
Vol 15 ◽  
Author(s):  
Moritz Gerster ◽  
Halgurd Taher ◽  
Antonín Škoch ◽  
Jaroslav Hlinka ◽  
Maxime Guye ◽  
...  

Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population. In this study, we consider a neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine mathematical modeling with structural information from non invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular, we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values. We demonstrate, along with the example of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation on recruited secondary networks.


2021 ◽  
Author(s):  
Andres A Kiani ◽  
Geoffrey M Ghose ◽  
Theoden I Netoff

Neural-mass modeling of neural population data (EEG, ECoG, or LFPs) has shown promise both in elucidating the neural processes underlying cortical rhythms and changes in brain state, as well as offering a framework for testing the interplay between these rhythms and information processing. Models of cortical alpha rhythms (8 - 12 Hz) and their impact in visual sensory processing have been at the forefront of this effort, with the Jansen-Rit being one of the more popular models in this domain. The Jansen-Rit model, however, fails in reproducing key physiological observations including the level of inputs that cortical neurons receive and their responses to visual transients. To address these issues we generated a neural mass model that complies better with synaptic mediated dynamics, intrinsic alpha behavior, and produces realistic responses. The model is robust to many changes in parameter values but critically depends on the ratio of excitation to inhibition, producing response transients whose features are dependent on this ratio and alpha phase and power. The model is sufficiently flexible so as to be able to easily replicate the range of low frequency oscillations observed in different studies. Consistent with experimental observations, we find phase-dependent response dynamics to both visual and electrical stimulation using this model. The model suggests that stimulation facilitates alpha at particular phases and suppresses it in others due to a phase dependent lag in inhibitory responses. Hence, the model generates insight into the physiological parameters responsible for intrinsic oscillations and testable hypotheses regarding the interactions between visual and electrical stimulation on those oscillations.


2017 ◽  
Author(s):  
Lara Escuain-Poole ◽  
Jordi Garcia-Ojalvo ◽  
Antonio J. Pons

AbstractData assimilation, defined as the fusion of data with preexisting knowledge, is particularly suited to elucidating underlying phenomena from noisy/insufficient observations. Although this approach has been widely used in diverse fields, only recently have efforts been directed to problems in neuroscience, using mainly intracranial data and thus limiting its applicability to invasive measurements involving electrode implants. Here we intend to apply data assimilation to non-invasive electroencephalography (EEG) measurements to infer brain states and their characteristics. For this purpose, we use Kalman filtering to combine synthetic EEG data with a coupled neural-mass model together with Ary’s model of the head, which projects intracranial signals onto the scalp. Our results show that using several extracranial electrodes allows to successfully estimate the state and parameters of the neural masses and their interactions, whereas one single electrode provides only a very partial and insufficient view of the system. The superiority of using multiple extracranial electrodes over using only one, be it intra- or extracranial, is shown over a wide variety of dynamical behaviours. Our results show potential towards future clinical applications of the method.Author SummaryTo completely understand brain function, we will need to integrate experimental information into a consistent theoretical framework. Invasive techniques as EcoG recordings, together with models that describe the brain at the mesoscale, provide valuable information about the brain state and its dynamical evolution when combined with techniques coming from control theory, such as the Kalman filter. This method, which is specifically designed to deal with systems with noisy or imperfect data, combines experimental data with theoretical models assuming Bayesian inference. So far, implementations of the Kalman filter have not been suited for non-invasive measures like EEG. Here we attempt to overcome this situation by introducing a model of the head that allows to transfer the intracranial signals produced by a mesoscopic model to the scalp in the form of EEG recordings. Our results show the advantages of using multichannel EEG recordings, which are extended in space and allow to discriminate signals produced by the interaction of coupled columns. The extension of the Kalman method presented here can be expected to expand the applicability of the technique to all situations where EEG recordings are used, including the routine monitoring of illnesses or rehabilitation tasks, brain-computer interface protocols, and transcranial stimulation.


2021 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Sheikh Md. Rabiul Islam ◽  
◽  
Md. Shakibul Islam ◽  

The electroencephalogram (EEG) is an electrophysiological monitoring strategy that records the spontaneous electrical movement of the brain coming about from ionic current inside the neurons of the brain. The importance of the EEG signal is mainly the diagnosis of different mental and brain neurodegenerative diseases and different abnormalities like seizure disorder, encephalopathy, dementia, memory problem, sleep disorder, stroke, etc. The EEG signal is very useful for someone in case of a coma to determine the level of brain activity. So, it is very important to study EEG generation and analysis. To reduce the complexity of understanding the pathophysiological mechanism of EEG signal generation and their changes, different simulation-based EEG modeling has been developed which are based on anatomical equivalent data. In this paper, Instead of a detailed model a neural mass model has been used to implement different simulation-based EEG models for EEG signal generation which refers to the simplified and straightforward method. This paper aims to introduce obtained EEG signals of own implementation of the Lopes da Silva model, Jansen-Rit model, and Wendling model in Simulink and to compare characteristic features with real EEG signals and better understanding the EEG abnormalities especially the seizure-like signal pattern.


2018 ◽  
Author(s):  
Anatoly Buchin ◽  
Cliff C. Kerr ◽  
Gilles Huberfeld ◽  
Richard Miles ◽  
Boris Gutkin

AbstractPharmacoresistant epilepsy is a common neurological disorder in which increased neuronal intrinsic excitability and synaptic excitation lead to pathologically synchronous behavior in the brain. In the majority of experimental and theoretical epilepsy models, epilepsy is associated with reduced inhibition in the pathological neural circuits, yet effects of intrinsic excitability are usually not explicitly analyzed. Here we present a novel neural mass model that includes intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We validated our model using local field potential data recorded from human hippocampal/subicular slices. We found that synaptic conductances and slow adaptation in the excitatory population both play essential roles for generating seizures and pre-ictal oscillations. Using bifurcation analysis, we found that transitions towards seizure and back to the resting state take place via Andronov-Hopf bifurcations. These simulations therefore suggest that single neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure dynamics and transition towards the epileptic state.Significance statementEpileptic seizures are commonly thought to arise from a pathology of inhibition in the brain circuits. Theoretical models aiming to explain epileptic oscillations usually describe the neural activity solely in terms of inhibition and excitation. Single neuron adaptation properties are usually assumed to have only a limited contribution to seizure dynamics. To explore this issue, we developed a novel neural mass model with adaption in the excitatory population. By including adaptation and intrinsic excitability together with inhibition in this model, we were able to account for several experimentally observed properties of seizures, resting state dynamics, and pre-ictal oscillations, leading to improved understanding of epileptic seizures.


2021 ◽  
Vol 15 ◽  
Author(s):  
Saba Tabatabaee ◽  
Fariba Bahrami ◽  
Mahyar Janahmadi

Growing evidence suggests that excitatory neurons in the brain play a significant role in seizure generation. Nonetheless, spiny stellate cells are cortical excitatory non-pyramidal neurons in the brain, whose basic role in seizure occurrence is not well understood. In the present research, we study the critical role of spiny stellate cells or the excitatory interneurons (EI), for the first time, in epileptic seizure generation using an extended neural mass model inspired by a thalamocortical model originally introduced by another research group. Applying bifurcation analysis on this modified model, we investigated the rich dynamics corresponding to the epileptic seizure onset and transition between interictal and ictal states caused by EI connectivity to other cell types. Our results indicate that the transition between interictal and ictal states (preictal signal) corresponds to a supercritical Hopf bifurcation, and thus, the extended model suggests that before seizure onset, the amplitude and frequency of neural activities gradually increase. Moreover, we showed that (1) the altered function of GABAergic and glutamatergic receptors of EI can cause seizure, and (2) the pathway between the thalamic relay nucleus and EI facilitates the transition from interictal to ictal activity by decreasing the preictal period. Thereafter, we considered both sensory and cortical periodic inputs to study model responses to various harmonic stimulations. Bifurcation analysis of the model, in this case, suggests that the initial state of the model might be the main cause for the transition between interictal and ictal states as the stimulus frequency changes. The extended thalamocortical model shows also that the amplitude jump phenomenon and non-linear resonance behavior result from the preictal state of the modified model. These results can be considered as a step forward to a deeper understanding of the mechanisms underlying the transition from normal activities to epileptic activities.


Sign in / Sign up

Export Citation Format

Share Document