scholarly journals Transcriptome of the parasitic flatworm Schistosoma mansoni during intra-mammalian development

2019 ◽  
Author(s):  
Arporn Wangwiwatsin ◽  
Anna V. Protasio ◽  
Shona Wilson ◽  
Christian Owusu ◽  
Nancy E. Holroyd ◽  
...  

AbstractSchistosomes are parasitic blood flukes that survive for many years within the mammalian host vasculature. How the parasites establish a chronic infection in the hostile bloodstream environment, whilst evading the host immune response is poorly understood. The parasite develops morphologically and grows as it migrates to its preferred vascular niche, avoiding or repairing damage from the host immune system. In this study, we investigated temporal changes in gene expression during the intra-mammalian development of Schistosoma mansoni. RNA-seq data were analysed from parasites developing in the lung through to egg-laying mature adult worms, providing a comprehensive picture of in vivo intra-mammalian development. Remarkably, genes involved in signalling pathways, developmental control, and adaptation to oxidative stress were up-regulated in the lung stage. The data also suggested a potential role in immune evasion for a previously uncharacterised gene. This study not only provides a large and comprehensive data resource for the research community, but also reveals new directions for further characterising host–parasite interactions that could ultimately lead to new control strategies for this neglected tropical disease pathogen.Author SummaryThe life cycle of the parasitic flatworm Schistosoma mansoni is split between snail and mammalian (often human) hosts. An infection can last for more than 10 years, during which time the parasite physically interacts with its mammalian host as it moves through the bloodstream, travelling through the lungs and liver, to eventually establish a chronic infection in the blood vessels around the host gut. Throughout this complex journey, the parasite develops from a relatively simple larval form into a more complex, sexually reproducing adult. To understand the molecular basis of parasite interactions with the host during this complex journey we have produced genome-wide expression data from developing parasites. The parasites were collected from experimentally-infected mice over its developmental time-course from the poorly studied lung stage, to the fully mature egg-laying adult worm. The data highlight many genes involved in processes known to be associated with key stages of the infection. In addition, the gene expression data provide a unique view of interactions between the parasite and the immune system in the lung, including novel players in host-parasite interactions. A detailed understanding of these processes may provide new opportunities to design intervention strategies, particularly those focussed on the early stages of the infection that are not targeted by current chemotherapy.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kate A. Rawlinson ◽  
Adam J. Reid ◽  
Zhigang Lu ◽  
Patrick Driguez ◽  
Anna Wawer ◽  
...  

Abstract Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis.


Parasitology ◽  
1987 ◽  
Vol 95 (3) ◽  
pp. 499-505 ◽  
Author(s):  
C. S. Richards ◽  
D. J. Minchella

SUMMARYIn someBiomphalaria glabrata–Schistosoma mansonicombinations snails are susceptible to infection as juveniles, but have variable susceptibility as adults. These snails become non-susceptible at the onset of egg-laying and typically revert to susceptibility in old age. Certain stocks ofB. glabratahave the capacity to form amoebocytic accumulations in the atrium, and this ability is under genetic control. The atrial amoebocytic accumulations are transitory, typically appearing at onset of egg-laying and disappearing after a few months. A snail stock which has genetic tendencies for both adult variable susceptibility and atrial amoebocytic accumulations was studied. An association between the time of occurrence of adult non-susceptibility and atrial accumulation is revealed as snails never became infected withS. mansoniwhen amoebocytic accumulations were present. Developing parasites, however, were not necessarily encapsulated and destroyed by amoebocytes. Some sporocysts were able to delay development until the amoebocytic accumulations disappeared. The timing of atrial amoebocytic accumulations and resulting transient non-susceptibility in this host-parasite combination could influence snail population dynamics.


Author(s):  
Lauren Fuess ◽  
Jesse N. Weber ◽  
Stijn den Haan ◽  
Natalie C. Steinel ◽  
Kum Chuan Shim ◽  
...  

ABSTRACTDespite the significant effect of host-parasite interactions on both ecological systems and organism health, there is still limited understanding of the mechanisms driving evolution of host resistance to parasites. One model of rapid evolution, the Baldwin Effect, describes the role of plasticity in adaptation to novel conditions, and subsequent canalization of associated traits. While mostly applied in the context of environmental conditions, this theory may be relevant to the evolution of host resistance to novel parasites. Here we test the applicability of the Baldwin Effect to the evolution of resistance in a natural system using threespine stickleback fish (Gasterosteus aculeatus) and their cestode parasite Schistochephalus solidus. We leverage a large transcriptomic data set to describe the response to S. solidus infection by three different genetic crosses of stickleback, from a resistant and a tolerant population. Hosts mount a multigenic response to the parasite that is similar among host genotypes. In addition, we document extensive constitutive variation in gene expression among host genotypes. However, although many genes are both infection-induced and differentially expressed between genotypes, this overlap is not more extensive than expected by chance. We also see little evidence of canalization of infection-induced gene expression in the derived resistant population. These patterns do not support the Baldwin Effect, though they illustrate the importance of variation in both constitutive expression and induced responses to parasites. Finally, our results improve understanding of the cellular mechanisms underlying a putative resistance phenotype (fibrosis). Combined, our results highlight the importance of both constitutive and inducible variation in the evolution of resistance to parasites, and identify new target genes contributing to fibrosis. These findings advance understanding of host-parasite interactions and co-evolutionary relationships in natural systems.


2021 ◽  
Author(s):  
Naoto Nishiura ◽  
Kunihiko Kaneko

AbstractRobustness and plasticity are essential features that allow biological systems to cope with complex and variable environments. Through the evolution of a given environment, the former, the insensitivity of phenotypes, is expected to increase, whereas the latter, the changeability of phenotypes, tends to diminish. However, in nature, plasticity is preserved to a certain degree. One possible cause for this is environmental variation, with one of the most important “environmental ” factors being inter-species interactions. As a first step toward investigating phenotypic plasticity in response to an ecological interaction, we present the study of a simple two-species system consisting of hosts and parasites. Hosts are expected to evolve to achieve a phenotype that optimizes fitness and increases the robustness of the corresponding phenotype by reducing phenotypic fluctuations. Conversely, plasticity evolves in order to avoid certain phenotypes being attacked by parasites. By simulating evolution using the host gene-expression dynamics model, we analyze the evolution of genotype-phenotype mapping. If the interaction is weak, the fittest phenotype of the host evolves to reduce phenotypic variances. In contrast, if a sufficient degree of interaction occurs, the phenotypic variances of hosts increase to escape parasite attacks. For the latter case, we found two strategies: if the noise in the stochastic gene expression is below a certain threshold, the phenotypic variance increases via genetic diversification, whereas above the threshold, it is increased due to noise-induced phenotypic plasticity. We examine how the increase in the phenotypic variances due to parasite interactions influences the growth rate of a single host, and observed a trade-off between the two. Our results help elucidate the roles played by noise and genetic mutations in the evolution of phenotypic plasticity and robustness in response to host-parasite interactions.Author summaryPlasticity and phenotypic variability induced by internal or external perturbations are common features of biological systems. However, certain environmental conditions initiate evolution to increase fitness and, in such cases, phenotypic variability is not advantageous, as has been demonstrated by previous laboratory and computer experiments. As a possible origin for such plasticity, we investigated the role of host-parasite interactions, such as those between bacteria and phages. Different parasite types attack hosts of certain phenotypes. Through numerical simulations of the evolution of host genotype-phenotype mapping, we found that, if the interaction is sufficiently strong, hosts increase phenotypic plasticity by increasing phenotypic fluctuations. Depending on the degree of noise in gene expression dynamics, there are two distinct strategies for increasing the phenotypic variances: via stochasticity in gene expression or via genetic variances. The former strategy, which can work over a faster time scale, leads to a decline in fitness, whereas the latter reduces the robustness of the fitted state. Our results provide insights into how phenotypic variances are preserved and how hosts can escape being attacked by parasites whose genes mutate to adapt to changes in parasites. These two host strategies, which depend on internal and external conditions, can be verified experimentally, for example, via the transcriptome analysis of microorganisms.


2016 ◽  
Vol 213 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Jean Langhorne ◽  
Patrick E. Duffy

Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host–parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology.


PLoS Biology ◽  
2005 ◽  
Vol 3 (7) ◽  
pp. e203 ◽  
Author(s):  
Scott L Nuismer ◽  
Sarah P Otto

2021 ◽  
Author(s):  
Estefanía Calvo Alvarez ◽  
Aline Crouzols ◽  
Brice Rotureau

The African trypanosome flagellum is essential in multiple aspects of the parasite development. In the mammalian infective form of this protist, FLAgellar Member 8 (FLAM8) is a large protein distributed along the entire flagellum that is suspected to be involved in host-parasite interactions. Analyses of knockdown and knockout trypanosomes demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and slender to stumpy differentiation. Functional investigations in experimental infections showed that FLAM8 -deprived trypanosomes are able to establish and maintain the infection in the blood circulation, and to differentiate into transmissible stumpy forms. However, bioluminescence imaging revealed that FLAM8 -null parasites exhibit an impaired dissemination in the extravascular compartment, especially in the skin, that is partially restored by the addition of a single rescue copy of FLAM8 . To our knowledge, FLAM8 is the first example of a flagellar protein that modulates T. brucei parasite distribution in the host tissues, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Parnika Mukherjee ◽  
Gaétan Burgio ◽  
Emanuel Heitlinger

ABSTRACT Dual RNA sequencing (RNA-Seq) is the simultaneous transcriptomic analysis of interacting symbionts, for example, in malaria. Potential cross-species interactions identified by correlated gene expression might highlight interlinked signaling, metabolic, or gene regulatory pathways in addition to physically interacting proteins. Often, malaria studies address one of the interacting organisms—host or parasite—rendering the other “contamination.” Here we perform a meta-analysis using such studies for cross-species expression analysis. We screened experiments for gene expression from host and Plasmodium. Out of 171 studies in Homo sapiens, Macaca mulatta, and Mus musculus, we identified 63 potential studies containing host and parasite data. While 16 studies (1,950 samples) explicitly performed dual RNA-Seq, 47 (1,398 samples) originally focused on one organism. We found 915 experimental replicates from 20 blood studies to be suitable for coexpression analysis and used orthologs for meta-analysis across different host-parasite systems. Centrality metrics from the derived gene expression networks correlated with gene essentiality in the parasites. We found indications of host immune response to elements of the Plasmodium protein degradation system, an antimalarial drug target. We identified well-studied immune responses in the host with our coexpression networks, as our approach recovers known broad processes interlinked between hosts and parasites in addition to individual host and parasite protein associations. The set of core interactions represents commonalities between human malaria and its model systems for prioritization in laboratory experiments. Our approach might also allow insights into the transferability of model systems for different pathways in malaria studies. IMPORTANCE Malaria still causes about 400,000 deaths a year and is one of the most studied infectious diseases. The disease is studied in mice and monkeys as lab models to derive potential therapeutic intervention in human malaria. Interactions between Plasmodium spp. and its hosts are either conserved across different host-parasite systems or idiosyncratic to those systems. Here we use correlation of gene expression from different RNA-Seq studies to infer common host-parasite interactions across human, mouse, and monkey studies. First, we find a set of very conserved interactors, worth further scrutiny in focused laboratory experiments. Second, this work might help assess to which extent experiments and knowledge on different pathways can be transferred from models to humans for potential therapy.


Sign in / Sign up

Export Citation Format

Share Document