scholarly journals Subjective value, not a gridlike code, describes neural activity in ventromedial prefrontal cortex during value-based decision-making

2019 ◽  
Author(s):  
Sangil Lee ◽  
Linda Q. Yu ◽  
Caryn Lerman ◽  
Joseph W. Kable

AbstractAcross many studies, ventromedial prefrontal cortex (vmPFC) activity has been found to correlate with subjective value during value-based decision-making. Recently, however, vmPFC has also been shown to reflect a hexagonal gridlike code during navigation through physical and conceptual space. This raises the possibility that the subjective value correlates previously observed in vmPFC may have actually been a misconstrued gridlike signal. Here, we first show that, in theory, a hexagonal gridlike code of two-dimensional attribute space could mimic vmPFC activity previously attributed to subjective value. However, using fMRI data from a large number of subjects performing an intertemporal choice task, we show clear and unambiguous evidence that subjective value is a better description of vmPFC activity than a hexagonal gridlike code. In fact, we find no significant evidence at all for a hexagonal gridlike code in vmPFC activity during intertemporal choice. This result limits the generality of gridlike modulation as description of vmPFC activity. We suggest that vmPFC may flexibly switch representational schemes so as to encode the most relevant information for the current task.

2019 ◽  
Author(s):  
David Victor Smith ◽  
Mauricio Delgado

Our behavior is inextricably linked to rewards in our environment. This observation has sparked considerable interest in understanding the neural mechanisms that support reward processing in humans. Early neuroimaging studies implicated regions such as the striatum and ventromedial prefrontal cortex (VMPFC) in reward processing, particularly how activation in these regions is modulated by anticipation and receipt of rewards. These findings have been extended in the context of models that account for the representation of subjective value, which influences decision making. Building from these findings, researchers are now beginning to characterize how social information has idiosyncratic influences on reward processing.


2020 ◽  
Author(s):  
Qingfang Liu ◽  
Woojong Yi ◽  
Christian A. Rodriguez ◽  
Samuel M. McClure ◽  
Brandon M. Turner

AbstractIntertemporal choice requires choosing between a smaller reward available after a shorter time delay and a larger reward available after a longer time delay. Previous studies suggest that intertemporal preferences are formed by generating a subjective value of the monetary rewards that depends on reward amount and the associated time delay. Neuroimaging results indicate that this subjective value is tracked by ventral medial prefrontal cortex (vmPFC) and ventral striatum. Subsequently, an accumulation process, subserved by a network including dorsal medial frontal cortex (dmFC), dorsal lateral prefrontal cortex (dlPFC) and posterior parietal cortex (pPC), selects a choice based on the subjective values. The mechanisms of how value accumulation interacts with subjective valuation to make a choice, and how brain regions communicate during decision making are undetermined. We developed and performed an EEG experiment that parametrically manipulated the probability of preferring delayed larger rewards. A computational model equipped with time and reward information transformation, selective attention, and stochastic value accumulation mechanisms was constructed and fit to choice and response time data using a hierarchical Bayesian approach.Phase-based functional connectivity between putative dmFC and pPC was found to be associated with stimulus processing and to resemble the reconstructed accumulation dynamics from the best performing computational model across experimental conditions. By combining computational modeling and phase-based functional connectivity, our results suggest an association between value accumulation, choice competition, and frontoparietal connectivity in intertemporal choice.Author summaryIntertemporal choice is a prominent experimental assay for impulsivity. Behavior in the task involves several cognitive functions including valuation, action selection and self-control. It is unknown how these different functions are temporally implemented during the course of decision making. In the current study, we combined formal computational models of intertemporal choice with a phase-based EEG measure of activity across brain regions to show that functional connectivity between dmFC and pPC reflects cognitive mechanisms of both visual stimulus processing and choice value accumulation. The result supports the notion that dynamic interaction between frontopatietal regions instantiates the critical value accumulation process in intertemporal choice.


2019 ◽  
Author(s):  
Allison D. Shapiro ◽  
Scott T. Grafton

AbstractTwo fundamental goals of decision making are to select actions that maximize rewards while minimizing costs and to have strong confidence in the accuracy of a judgment. Neural signatures of these two forms of value: the subjective value (SV) of choice alternatives and the value of the judgment (confidence), have both been observed in ventromedial prefrontal cortex (vmPFC). However, the relationship between these dual value signals and their relative time courses are unknown. We recorded fMRI while 28 men and women performed a two-phase Ap-Av task with mixed-outcomes of monetary rewards paired with painful shock stimuli. Neural responses were measured during offer valuation (offer phase) and choice valuation (commit phase) and analyzed with respect to observed decision outcomes, model-estimated SV and confidence. During the offer phase, vmPFC tracked SV and decision outcomes, but it not confidence. During the commit phase, vmPFC tracked confidence, computed as the quadratic extension of SV, but it bore no significant relationship with the offer valuation itself, nor the decision. In fact, vmPFC responses from the commit phase were selective for confidence even for rejected offers, wherein confidence and SV were inversely related. Conversely, activation of the cognitive control network, including within lateral prefrontal cortex (lPFC) and dorsal anterior cingulate cortex (dACC) was associated with ambivalence, during both the offer and commit phases. Taken together, our results reveal complementary representations in vmPFC during value-based decision making that temporally dissociate such that offer valuation (SV) emerges before decision valuation (confidence).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. Kaiser ◽  
Theo O. J. Gruendler ◽  
Oliver Speck ◽  
Lennart Luettgau ◽  
Gerhard Jocham

AbstractIn a dynamic world, it is essential to decide when to leave an exploited resource. Such patch-leaving decisions involve balancing the cost of moving against the gain expected from the alternative patch. This contrasts with value-guided decisions that typically involve maximizing reward by selecting the current best option. Patterns of neuronal activity pertaining to patch-leaving decisions have been reported in dorsal anterior cingulate cortex (dACC), whereas competition via mutual inhibition in ventromedial prefrontal cortex (vmPFC) is thought to underlie value-guided choice. Here, we show that the balance between cortical excitation and inhibition (E/I balance), measured by the ratio of GABA and glutamate concentrations, plays a dissociable role for the two kinds of decisions. Patch-leaving decision behaviour relates to E/I balance in dACC. In contrast, value-guided decision-making relates to E/I balance in vmPFC. These results support mechanistic accounts of value-guided choice and provide evidence for a role of dACC E/I balance in patch-leaving decisions.


2018 ◽  
Vol 29 (10) ◽  
pp. 4277-4290 ◽  
Author(s):  
Patrick S Hogan ◽  
Joseph K Galaro ◽  
Vikram S Chib

Abstract The perceived effort level of an action shapes everyday decisions. Despite the importance of these perceptions for decision-making, the behavioral and neural representations of the subjective cost of effort are not well understood. While a number of studies have implicated anterior cingulate cortex (ACC) in decisions about effort/reward trade-offs, none have experimentally isolated effort valuation from reward and choice difficulty, a function that is commonly ascribed to this region. We used functional magnetic resonance imaging to monitor brain activity while human participants engaged in uncertain choices for prospective physical effort. Our task was designed to examine effort-based decision-making in the absence of reward and separated from choice difficulty—allowing us to investigate the brain’s role in effort valuation, independent of these other factors. Participants exhibited subjectivity in their decision-making, displaying increased sensitivity to changes in subjective effort as objective effort levels increased. Analysis of blood-oxygenation-level dependent activity revealed that the ventromedial prefrontal cortex (vmPFC) encoded the subjective valuation of prospective effort, and ACC activity was best described by choice difficulty. These results provide insight into the processes responsible for decision-making regarding effort, partly dissociating the roles of vmPFC and ACC in prospective valuation of effort and choice difficulty.


2014 ◽  
Vol 369 (1655) ◽  
pp. 20130473 ◽  
Author(s):  
Tobias Larsen ◽  
John P. O'Doherty

While there is a growing body of functional magnetic resonance imaging (fMRI) evidence implicating a corpus of brain regions in value-based decision-making in humans, the limited temporal resolution of fMRI cannot address the relative temporal precedence of different brain regions in decision-making. To address this question, we adopted a computational model-based approach to electroencephalography (EEG) data acquired during a simple binary choice task. fMRI data were also acquired from the same participants for source localization. Post-decision value signals emerged 200 ms post-stimulus in a predominantly posterior source in the vicinity of the intraparietal sulcus and posterior temporal lobe cortex, alongside a weaker anterior locus. The signal then shifted to a predominantly anterior locus 850 ms following the trial onset, localized to the ventromedial prefrontal cortex and lateral prefrontal cortex. Comparison signals between unchosen and chosen options emerged late in the trial at 1050 ms in dorsomedial prefrontal cortex, suggesting that such comparison signals may not be directly associated with the decision itself but rather may play a role in post-decision action selection. Taken together, these results provide us new insights into the temporal dynamics of decision-making in the brain, suggesting that for a simple binary choice task, decisions may be encoded predominantly in posterior areas such as intraparietal sulcus, before shifting anteriorly.


2020 ◽  
Author(s):  
Sebastian Bobadilla-Suarez ◽  
Olivia Guest ◽  
Bradley C. Love

AbstractRecent work has considered the relationship between value and confidence in both behavior and neural representation. Here we evaluated whether the brain organizes value and confidence signals in a systematic fashion that reflects the overall desirability of options. If so, regions that respond to either increases or decreases in both value and confidence should be widespread. We strongly confirmed these predictions through a model-based fMRI analysis of a mixed gambles task that assessed subjective value (SV) and inverse decision entropy (iDE), which is related to confidence. Purported value areas more strongly signalled iDE than SV, underscoring how intertwined value and confidence are. A gradient tied to the desirability of actions transitioned from positive SV and iDE in ventromedial prefrontal cortex to negative SV and iDE in dorsal medial prefrontal cortex. This alignment of SV and iDE signals could support retrospective evaluation to guide learning and subsequent decisions.


2021 ◽  
Author(s):  
Elisa Ciaramelli ◽  
Flavia De Luca ◽  
Donna Kwan ◽  
Jenkin N. Y. Mok ◽  
Francesca Bianconi ◽  
...  

Intertemporal choices require trade-offs between short-term and long-term outcomes. Ventromedial prefrontal cortex (vmPFC) damage causes steep discounting of future rewards (delay discounting; DD) and impoverished episodic future thinking (EFT). The role of vmPFC in reward valuation, EFT, and their interaction during intertemporal choice is still unclear. Here, twelve patients with lesions to vmPFC and forty-one healthy controls chose between smallerimmediate and larger-delayed rewards while we manipulated reward magnitude and the availability of EFT cues. In the EFT condition, participants imagined personal events to occur at the delays associated with the larger-delayed rewards. We found that DD was steeper in vmPFC patients compared to controls, and not modulated by reward magnitude. However, EFT cues downregulated DD in vmPFC patients as well as controls. These findings indicate that vmPFC integrity is critical for the valuation of (future) rewards, but not to instill EFT in intertemporal choice.


Sign in / Sign up

Export Citation Format

Share Document