scholarly journals Principles of 3D Nucleus Organization and Epigenetic Regulation in Diploid Genome Revealed by Multi-omic Data from Hybrid Mouse

2019 ◽  
Author(s):  
Zhijun Han ◽  
Cui Kairong ◽  
Katarzyna Placek ◽  
Ni Hong ◽  
Chengqi Lin ◽  
...  

AbstractMost mammalian genomes are diploid and previous studies have extensively investigated the average epigenetic profiles of homologous chromosomes. Here we use hybrid mice to distinguish the epigenetic status and three-dimensional organization of homologous chromosomes. We generated Hi-C, ChIP-seq and RNA-seq datasets from CD4 T cells of B6, Cast and hybrid mice, respectively, and systematically analyzed the 3D nucleus organization and epigenetic regulation. Our data indicate that the inter-chromosomal interaction patterns between homologous chromosomes are similar and the similarity is highly correlated with their allelic co-expression levels. Construction of 3D nucleus based on allele-specific interaction frequency revealed symmetric positioning of homologous chromosomes in the 3D nuclear space. The inter-chromosomal interactions at centromeres are significantly weaker than those at telomeres, indicating positioning of centromeres toward the inside of chromosome territories and telomeres toward the surface of chromosome territories. The majority A|B compartments or topologically associated domains (TADs) are consistent between B6 and Cast. We found 58% of the haploids in hybrids maintain their parental compartment status at B6/Cast divergent compartments due to cis-effect. About 95% of the trans-effected B6/Cast divergent compartments converge to same compartment status potentially due to a shared cellular environment. We found the differentially expressed genes between the two haploids in hybrid were associated with either genetic associated cis-effects or epigenetic associated trans-effects. The widespread epigenetic differences between B6 and Cast suggest that epigenetic changes may be major contributors to differences between B6 and Cast. Our data revealed symmetrical positioning of homologous chromosomes in 3D nucleus and enhanced our understanding of allele-specific epigenetic regulation.

2021 ◽  
Author(s):  
Yoshito Hirata ◽  
Arisa H. Oda ◽  
Chie Motono ◽  
Masanori Shiro ◽  
Kunihiro Ohta

AbstractThe sparseness of chromosomal contact information and the presence of homologous chromosomes with very similar nucleotide sequences make Hi-C analysis difficult. We propose a new algorithm using allele-specific single-nucleotide variations (SNVs) to reconstruct the three-dimensional (3D) chromosomal architectures from the Hi-C dataset of single diploid cells. Our algorithm has a function to discriminate SNVs specifically found between homologous chromosomes to our “recurrence plot”-based algorithm to estimate the 3D chromosome structure, which does not require imputation for ambiguous segment information. The new algorithm can efficiently reconstruct 3D chromosomal structures in single human diploid cells by employing only Hi-C segment pairs containing allele-specific SNVs. The datasets of the remaining pairs of segments without allele-specific SNVs are used to validate the estimated chromosome structure. This approach was used to reconstruct the 3D structures of human chromosomes in single diploid cells at a 1-Mb resolution. Introducing a subsequent mathematical measure further improved the resolution to 40-kb or 100-kb. The reconstruction data reveals that human chromosomes form chromosomal territories and take fractal structures where the mean dimension is a non-integer value. We also validate our approach by estimating 3D protein/polymer structures.


2020 ◽  
Vol 26 (42) ◽  
pp. 7537-7554 ◽  
Author(s):  
Juan Zeng ◽  
Zunnan Huang

Background: The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal’s paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. Methods: In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal’s paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. Results: The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. Conclusion: This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.


2020 ◽  
Author(s):  
Patrick Kenney ◽  
Subramanian Sankaranarayanan ◽  
Michael Balogh ◽  
Emily Indriolo

AbstractMembers of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including Glyoxalase I (GLO1) which is necessary for successful pollination. Suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas, suggesting that GLO1 functions as an inter-species compatibility factor. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.


2011 ◽  
pp. 145-160
Author(s):  
Vivian Hsueh Hua Chen ◽  
Henry Been Lirn Duh

Massive Multiplayer Online Games (MMOG) allows a large number of players to cooperate, compete and interact meaningfully in the online environment. Gamers are able to form social network with fellow gamers and create a unique virtual community. Although research has discussed the importance of social interaction in MMOG, it fails to articulate how social interaction takes place in the game. The current chapter aims to depict how gamers interact and socialize with each other in a popular MMOG, World of Warcraft. Through virtual ethnography, specific interaction patterns and communication behaviors within the community are discussed. It is concluded that the types of social interaction taken place in the gaming world is influenced by the temporal and spatial factors of the game as well as the game mechanisms.


Author(s):  
Nadine Übelmesser ◽  
Argyris Papantonis

Abstract The way that chromatin is organized in three-dimensional nuclear space is now acknowledged as a factor critical for the major cell processes, like transcription, replication and cell division. Researchers have been armed with new molecular and imaging technologies to study this structure-to-function link of genomes, spearheaded by the introduction of the ‘chromosome conformation capture’ technology more than a decade ago. However, this technology is not without shortcomings, and novel variants and orthogonal approaches are being developed to overcome these. As a result, the field of nuclear organization is constantly fueled by methods of increasing resolution and/or throughput that strive to eliminate systematic biases and increase precision. In this review, we attempt to highlight the most recent advances in technology that promise to provide novel insights on how chromosomes fold and function.


Author(s):  
Lucca Pietro Camillo dos Santos ◽  
Bruno Moisés de Matos ◽  
Brenda Cecilia de Maman Ribeiro ◽  
Nilson Ivo Tonin Zanchin ◽  
Beatriz Gomes Guimarães

Kinetoplastida, a class of early-diverging eukaryotes that includes pathogenic Trypanosoma and Leishmania species, display key differences in their translation machinery compared with multicellular eukaryotes. One of these differences involves a larger number of genes encoding eIF4E and eIF4G homologs and the interaction pattern between the translation initiation factors. eIF4G is a scaffold protein which interacts with the mRNA cap-binding factor eIF4E, the poly(A)-binding protein, the RNA helicase eIF4A and the eIF3 complex. It contains the so-called middle domain of eIF4G (MIF4G), a multipurpose adaptor involved in different protein–protein and protein–RNA complexes. Here, the crystal structure of the MIF4G domain of T. cruzi EIF4G5 is described at 2.4 Å resolution, which is the first three-dimensional structure of a trypanosomatid MIF4G domain to be reported. Structural comparison with IF4G homologs from other eukaryotes and other MIF4G-containing proteins reveals differences that may account for the specific interaction mechanisms of MIF4G despite its highly conserved overall fold.


2005 ◽  
Vol 16 (3) ◽  
pp. 1178-1188 ◽  
Author(s):  
Mark Winey ◽  
Garry P. Morgan ◽  
Paul D. Straight ◽  
Thomas H. Giddings ◽  
David N. Mastronarde

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.


2013 ◽  
Vol 88 (5) ◽  
pp. 2991-3003 ◽  
Author(s):  
M. Mietzsch ◽  
F. Broecker ◽  
A. Reinhardt ◽  
P. H. Seeberger ◽  
R. Heilbronn ◽  
...  

2007 ◽  
Vol 189 (15) ◽  
pp. 5716-5727 ◽  
Author(s):  
Seetha V. Balasingham ◽  
Richard F. Collins ◽  
Reza Assalkhou ◽  
Håvard Homberset ◽  
Stephan A. Frye ◽  
...  

ABSTRACT Neisseria meningitidis can be the causative agent of meningitis or septicemia. This bacterium expresses type IV pili, which mediate a variety of functions, including autoagglutination, twitching motility, biofilm formation, adherence, and DNA uptake during transformation. The secretin PilQ supports type IV pilus extrusion and retraction, but it also requires auxiliary proteins for its assembly and localization in the outer membrane. Here we have studied the physical properties of the lipoprotein PilP and examined its interaction with PilQ. We found that PilP was an inner membrane protein required for pilus expression and transformation, since pilP mutants were nonpiliated and noncompetent. These mutant phenotypes were restored by the expression of PilP in trans. The pilP gene is located upstream of pilQ, and analysis of their transcripts indicated that pilP and pilQ were cotranscribed. Furthermore, analysis of the level of PilQ expression in pilP mutants revealed greatly reduced amounts of PilQ only in the deletion mutant, exhibiting a polar effect on pilQ transcription. In vitro experiments using recombinant fragments of PilP and PilQ showed that the N-terminal region of PilP interacted with the middle part of the PilQ polypeptide. A three-dimensional reconstruction of the PilQ-PilP interacting complex was obtained at low resolution by transmission electron microscopy, and PilP was shown to localize around the cap region of the PilQ oligomer. These findings suggest a role for PilP in pilus biogenesis. Although PilQ does not need PilP for its stabilization or membrane localization, the specific interaction between these two proteins suggests that they might have another coordinated activity in pilus extrusion/retraction or related functions.


Sign in / Sign up

Export Citation Format

Share Document