scholarly journals Spironolactone but not Eplerenone Exacerbates Cisplatin Nephrotoxicity

2019 ◽  
Author(s):  
Gabriel R. Estrela ◽  
Benjamin Bonnard ◽  
Jonatan Barrera-Chimal ◽  
Frédéric Jaisser

AbstractCisplatin is a highly successful chemotherapeutic agent used for the treatment of solid tumors. However, nephrotoxicity is a limiting factor that occurs in 30% of patients under treatment. Many mechanisms are involved in cisplatin-induced nephrotoxicity, such as epithelial and endothelial injury, inflammation, oxidative stress, and renal vasoconstriction. The mineralocorticoid receptor (MR) has an important role in inflammation and vascular function. MR blockage and ablation have been shown to be effective in preventing renal ischemia-reperfusion injury and cyclosporine A-induced nephrotoxicity. We investigated whether MR antagonism with spironolactone or eplerenone could prevent cisplatin-induced nephrotoxicity. Here, we show that spironolactone treatment exacerbates nephrotoxicity in mice treated with acute and long-term cisplatin regimes. Moreover, spironolactone potentiated the toxicity induced by cisplatin treatment in a cell viability assay in human embryonic kidney cells. In contrast, eplerenone neither prevented nor increased cisplatin toxicity in mice or cultured cells. Thus, our studies support recent findings showing that spironolactone potentiates cisplatin-induced cytotoxicity, independently of mineralocorticoid receptor inhibition.

2007 ◽  
Vol 293 (1) ◽  
pp. F78-F86 ◽  
Author(s):  
Juan M. Mejía-Vilet ◽  
Victoria Ramírez ◽  
Cristino Cruz ◽  
Norma Uribe ◽  
Gerardo Gamba ◽  
...  

Renal ischemia and reperfusion (I/R) injury is the major cause of acute renal failure and may also be involved in the development and progression of some forms of chronic kidney disease. We previously showed that a mineralocorticoid receptor (MR) blockade prevents renal vasoconstriction induced by cyclosporine that leads to acute and chronic renal failure (Feria I, Pichardo I, Juarez P, Ramirez V, Gonzalez MA, Uribe N, Garcia-Torres R, Lopez-Casillas F, Gamba G, Bobadilla NA. Kidney Int 63: 43–52, 2003; Perez-Rojas JM, Derive S, Blanco JA, Cruz C, Martinez de la Maza L, Gamba G, Bobadilla NA. Am J Physiol Renal Physiol 289: F1020–F1030, 2005). Thus we investigated whether spironolactone administration prevents the functional and structural damage induced by renal ischemia-reperfusion (I/R). Five groups were studied: sham-operated animals, rats that underwent 20 min of ischemia and 24 h of reperfusion, and three groups that received spironolactone 1, 2, or 3 days before I/R, respectively. Renal I/R produced significant renal dysfunction and tubular damage. Spironolactone administration completely prevented a decrease in renal blood flow, the development of acute renal failure, and tubular apoptosis. The protection conferred by spironolactone was characterized by decreasing oxidative stress, as evidenced by a reduction in kidney lipoperoxidation, increasing expression of antioxidant enzymes, and restoration of urinary NO2/NO3 excretion. Endothelial nitric oxide synthase expression was upregulated by a mineralocorticoid receptor blockade in I/R groups; in addition, an increase in activating phosphorylation of this enzyme at residue S1177 and a decrease in inactivating phosphorylation at T497 were observed. In conclusion, our study shows that spironolactone administration prevents the renal injury induced by I/R, suggesting that aldosterone plays a central role in this model of renal injury.


2021 ◽  
Vol 22 (15) ◽  
pp. 7774
Author(s):  
Sevil Korkmaz-Icöz ◽  
Cenk Kocer ◽  
Alex A. Sayour ◽  
Patricia Kraft ◽  
Mona I. Benker ◽  
...  

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


2022 ◽  
Author(s):  
Jing Wu ◽  
zhonghao li ◽  
xiaoke dong ◽  
siyuan yuan ◽  
jinmin liu ◽  
...  

Abstract Background: Acute ischemic stroke (AIS) and following reperfusion therapy-induced cerebral ischemia reperfusion (I/R) injury have been recognized as an important subject of cerebrovascular disease with high mortality. Oxidative stress is an important pathological process of cerebral I/R injury. microRNA-19a (miR-19a) is involved in I/R. As the organ protectant agent, Shenmai Injection (SMI) is widely used in the clinical treatment of cerebral infarction. Purpose: This study aims to explore whether SMI can reduce oxidative stress by regulating miR-19a, thereby treating I/R injury. Methods: The oxidative stress state of PC12 cells was induced by H2O2, and then the cells were cultured with SMI. The therapeutic effect of SMI was evaluated by detecting cellular superoxide dismutase (SOD), malondialdehyde (MDA) and other oxidative markers with the kit. Western blot, PCR, immunofluorescence and other techniques were used to elucidate the potential mechanism of SMI. Results: Cell viability assay results showed that SMI could improve the viability of PC12 cells stimulated by H2O2. Compared with the H2O2 group, after SMI treatment, the contents of MDA and reactive oxygen species (ROS) were significantly reduced, while the activity of SOD was significantly increased, and SMI could reduce apoptosis by increasing the content of adenosine 5'-triphosphate (ATP) in cells and enhancing the mitochondrial membrane potential (∆Ψm). Western blot and qRT-PCR results showed that these effects were partially achieved through the AMPK/Sirt1/PGC-1α pathway. The level of miR-19a was significantly increased in H2O2 group, and SMI could protect the cells by reducing miR-19a. Further investigated the target of miR-19a, and transfected cells with miR-19a mimic and inhibitor respectively. We found that AdipoR2 was a direct target of miR-19a, and miR-19a could inhibit AdipoR2/PI3K/Akt/mTOR pathway. Conclusion:SMI can activate AMPK/Sirt1/PGC-1α and AdipoR2/PI3K/Akt/mTOR pathways by reducing miR-19a levels, and protect PC12 cells stimulated by H2O2.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xutong Li ◽  
Ye Zhang ◽  
Yong Wang ◽  
Dan Zhao ◽  
Chengcheng Sun ◽  
...  

Background. Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods. BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results. Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion ( P < 0.05 ). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups ( P < 0.05 ), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells ( P < 0.05 ), while there was no significant difference between the ExoCXCR4 and ExoCon groups ( P > 0.05 ). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group ( P < 0.05 ). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins ( P < 0.05 ). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway ( P < 0.05 ). Conclusions. In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.


2002 ◽  
Vol 283 (6) ◽  
pp. C1722-C1728 ◽  
Author(s):  
Eeva Martelin ◽  
Risto Lapatto ◽  
Kari O. Raivio

Xanthine oxidoreductase (XOR) may produce reactive oxygen species and play a role in ischemia-reperfusion injury. Because tissue iron levels increase after ischemia, and because XOR contains functionally critical iron-sulfur clusters, we studied the effects of intracellular iron on XOR expression. Ferric ammonium citrate and FeSO4elevated intracellular iron levels and increased XOR activity up to twofold in mouse fibroblast and human bronchial epithelial cells. Iron increased XOR protein and mRNA levels, whereas protein and RNA synthesis inhibitors abolished the induction of XOR activity. A human XOR promoter construct (nucleotides +42 to −1937) was not induced by iron in human embryonic kidney cells. Hydroxyl radical scavengers did not block induction of XOR activity by iron. Iron chelation by deferoxamine (DFO) decreased XOR activity but did not lower endogenous XOR protein or mRNA levels. Furthermore, DFO reduced the activity of overexpressed human XOR but not the amount of immunoreactive protein. Our data show that XOR activity is transcriptionally induced by iron but posttranslationally inactivated by iron chelation.


2020 ◽  
Vol 9 (19) ◽  
Author(s):  
Huijing Xia ◽  
Zhen Li ◽  
Thomas E. Sharp ◽  
David J. Polhemus ◽  
Jean Carnal ◽  
...  

Background Hydrogen sulfide (H 2 S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ‐lyase (CSE), 1 of 3 H 2 S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell‐specific CSE overexpressed transgenic mice (EC‐CSE Tg) and endothelial cell‐specific CSE knockout mice (EC‐CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia‐reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H 2 S and NO, augmented endothelial‐dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial‐reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H 2 S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial‐reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE‐derived H 2 S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase—NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.


2014 ◽  
Vol 56 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Wesam Alhejily ◽  
Alda Aleksi ◽  
Billie-Jean Martin ◽  
Todd J. Anderson

Sign in / Sign up

Export Citation Format

Share Document