Human iPSC modeling reveals mutation-specific responses to gene therapy in Best disease

2019 ◽  
Author(s):  
Divya Sinha ◽  
Benjamin Steyer ◽  
Pawan K. Shahi ◽  
Katherine Mueller ◽  
Rasa Valiauga ◽  
...  

AbstractDominantly inherited disorders are not typically considered therapeutic candidates for gene augmentation. Here, we utilized patient-specific induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in iPSC-RPE models of recessive bestrophinopathy and dominant Best disease caused by two different ion binding domain mutations. A dominant Best disease iPSC-RPE model that did not respond to gene augmentation showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then tested gene editing in all three dominant Best disease iPSC-RPE models, which produced premature stop codons exclusively within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of RPE transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some dominant Best disease patients and that non-responders are candidates for alternate approaches such as genome editing. However, testing genome editing strategies for on-target efficiency and off-target events using patient-matched iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected patients.SignificanceDominantly inherited disorders pose distinct challenges for gene therapies, particularly in the face of extreme mutational diversity. We tested whether a broad gene replacement strategy could reverse the cellular phenotype of Best disease, a dominant blinding condition that targets retinal pigment epithelium (RPE). Using RPE generated from patient-specific induced pluripotent stem cells (iPSCs), we show that gene replacement functionally overcomes some, but not all, of the tested mutations. In comparison, all dominant Best disease models tested were phenotypically corrected after mutation-specific genome editing, although one off-target genomic alteration was discovered. Our results support a two-tiered approach to gene therapy for Best disease, guided by safety and efficacy testing in iPSC-RPE models to maximize personal and public health value.

2018 ◽  
Vol 115 (15) ◽  
pp. 3936-3941 ◽  
Author(s):  
Masayuki Hata ◽  
Hanako O. Ikeda ◽  
Sachiko Iwai ◽  
Yuto Iida ◽  
Norimoto Gotoh ◽  
...  

Bietti’s crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.


2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Guang-Yin Peng ◽  
Yang Lin ◽  
Jing-Jing Li ◽  
Ying Wang ◽  
Hao-Yue Huang ◽  
...  

Vascular disorders are complex diseases with high morbidity and mortality. Among them, the dilated macrovascular diseases (MVD), such as aortic aneurysm and aortic dissection, have presented a huge threat to human health. The pathogenesis of vascular diseases is mostly associated with property alteration of vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). Studies have confirmed that induced pluripotent stem cells (iPSCs) can be proliferated and differentiated into other somatic cells, such as VECs and VSMCs. And patient-specific cells could provide detailed human-associated information in regard to pathogenesis or drug responses. In addition, differentiated ECs from iPSC have been widely used in disease modeling as a cell therapy. In this review, we mainly discussed the application of hiPSCs in investigating the pathological mechanism of different inherited vascular diseases and provide a comprehensive understanding of hiPSCs in the field of clinical diagnosis and gene therapy.


2019 ◽  
Vol 20 (15) ◽  
pp. 3773 ◽  
Author(s):  
Mostafa Kiamehr ◽  
Alexa Klettner ◽  
Elisabeth Richert ◽  
Ali Koskela ◽  
Arto Koistinen ◽  
...  

In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.


2018 ◽  
Vol 10 ◽  
pp. 251584141881749 ◽  
Author(s):  
Andreas Mitsios ◽  
Adam M. Dubis ◽  
Mariya Moosajee

Choroideremia is an X-linked inherited chorioretinal dystrophy leading to blindness by late adulthood. Choroideremia is caused by mutations in the CHM gene which encodes Rab escort protein 1 (REP1), an ubiquitously expressed protein involved in intracellular trafficking and prenylation activity. The exact site of pathogenesis remains unclear but results in degeneration of the photoreceptors, retinal pigment epithelium and choroid. Animal and stem cell models have been used to study the molecular defects in choroideremia and test effectiveness of treatment interventions. Natural history studies of choroideremia have provided additional insight into the clinical phenotype of the condition and prepared the way for clinical trials aiming to investigate the safety and efficacy of suitable therapies. In this review, we provide a summary of the current knowledge on the genetics, pathophysiology, clinical features and therapeutic strategies that might become available for choroideremia in the future, including gene therapy, stem cell treatment and small-molecule drugs with nonsense suppression action.


Sign in / Sign up

Export Citation Format

Share Document