scholarly journals Reduction of lipid accumulation rescues Bietti’s crystalline dystrophy phenotypes

2018 ◽  
Vol 115 (15) ◽  
pp. 3936-3941 ◽  
Author(s):  
Masayuki Hata ◽  
Hanako O. Ikeda ◽  
Sachiko Iwai ◽  
Yuto Iida ◽  
Norimoto Gotoh ◽  
...  

Bietti’s crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hiroyuki Kamao ◽  
Atsushi Miki ◽  
Junichi Kiryu

Purpose. The evaluation of drug-induced cytotoxicity is of great importance for the clinical application of pharmaceutical products, and human-induced pluripotent stem cells (hiPSCs) have received considerable scrutiny as a cell source for in vitro cytotoxicity testing. The aim of this study is to validate the concept of cytotoxicity testing using hiPSC-derived retinal pigment epithelium (hiPSC-RPE) by comparing the responsiveness of human fetal RPE (hfRPE) and human RPE cell line (ARPE19) to recombinant tissue plasminogen activator (rtPA). Methods. HfRPE, two types of hiPSC-RPE, and ARPE19 were cultured in media with or without rtPA. A lactate dehydrogenase release assay was performed to investigate the dose- and time-dependent effects of rtPA on cell death. RPE function was evaluated by measuring the secretion of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) and RPE-specific gene expression. Results. Rates of cell damage in hfRPE and both hiPS-RPE were increased by rtPA supplementation (2000 and 4000 μg/ml) for 1 hour, whereas ARPE19 cell damage was increased by supplementation with rtPA at concentrations higher than 50 μg/ml. Although 100 μg/ml rtPA for 24 hours did not affect RPE cell function, sustained rtPA exposure induced prolonged cytotoxic effects in hfRPE and two hiPSC-RPE, but not ARPE19. Conclusion. The responsiveness of hiPSC-RPE to rtPA is similar to that of hfRPE in terms of cell death and cell function. Thus, hiPSC-RPE is a valuable cell source for in vitro cytotoxicity testing.


2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-60
Author(s):  
Veronica Rodriguez Fernandez ◽  
Giovanni Casini ◽  
Fabrizio Bruschi

Ocular toxoplasmosis (OT) is caused by the parasite Toxoplasma gondii and affects many individuals throughout the world. Infection may occur through congenital or acquired routes. The parasites enter the blood circulation and reach both the retina and the retinal pigment epithelium, where they may cause cell damage and cell death. Different routes of access are used by T. gondii to reach the retina through the retinal endothelium: by transmission inside leukocytes, as free parasites through a paracellular route, or after endothelial cell infection. A main feature of OT is the induction of an important inflammatory state, and the course of infection has been shown to be influenced by the host immunogenetics. On the other hand, there is evidence that the T. gondii phenotype also has an impact on the distribution of the pathology in different areas. Although considerable knowledge has been acquired on OT, a deeper knowledge of its mechanisms is necessary to provide new, more targeted treatment strategies. In particular, in addition to in vitro and in vivo experimental models, organotypic, ex vivo retinal explants may be useful in this direction.


1988 ◽  
Vol 91 (2) ◽  
pp. 303-312
Author(s):  
N.M. McKechnie ◽  
M. Boulton ◽  
H.L. Robey ◽  
F.J. Savage ◽  
I. Grierson

The cytoskeletal elements of normal (in situ) and cultured human retinal pigment epithelium (RPE) were studied by a variety of immunocytochemical techniques. Primary antibodies to vimentin and cytokeratins were used. Positive immunoreactivity for vimentin was obtained with in situ and cultured material. The pattern of reactivity obtained with antisera and monoclonals to cytokeratins was more complex. Cytokeratin immunoreactivity could be demonstrated in situ and in cultured cells. The pattern of cytokeratin expression was similar to that of simple or glandular epithelia. A monoclonal antibody that specifically recognizes cytokeratin 18 identified a population of cultured RPE cells that had particularly well-defined filamentous networks within their cytoplasm. Freshly isolated RPE was cytokeratin 18 negative by immunofluorescence, but upon culture cytokeratin 18 positive cells were identifiable. Cytokeratin 18 positive cells were identified in all RPE cultures (other than early primaries), regardless of passage number, age or sex of the donor. In post-confluent cultures cytokeratin 18 cells were identified growing over cytokeratin 18 negative cells, suggesting an association of cytokeratin 18 immunoreactivity with cell proliferation. Immunofluorescence studies of retinal scar tissue from two individuals revealed the presence of numerous cytokeratin 18 positive cells. These findings indicate that RPE cells can be identified by their cytokeratin immunoreactivity and that the overt expression of cytokeratin 18 may be associated with proliferation of human RPE both in vitro and in vivo.


2017 ◽  
Vol 117 (04) ◽  
pp. 750-757
Author(s):  
Xin Jia ◽  
Chen Zhao ◽  
Qishan Chen ◽  
Yuxiang Du ◽  
Lijuan Huang ◽  
...  

SummaryJunctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 828 ◽  
Author(s):  
Manuel Saenz de Viteri ◽  
María Hernandez ◽  
Valentina Bilbao-Malavé ◽  
Patricia Fernandez-Robredo ◽  
Jorge González-Zamora ◽  
...  

Retinal pigment epithelium (RPE) is a key regulator of retinal function and is directly related to the transport, delivery, and metabolism of long-chain n-3 polyunsaturated fatty acids (n3-PUFA), in the retina. Due to their functions and location, RPE cells are constantly exposed to oxidative stress. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown to have antioxidant effects by different mechanisms. For this reason, we designed an in vitro study to compare 10 formulations of DHA and EPA supplements from different origins and combined in different proportions, evaluating their effect on cell viability, cell proliferation, reactive oxygen species production, and cell migration using ARPE-19 cells. Furthermore, we assessed their ability to rescue RPE cells from the oxidative conditions seen in diabetic retinopathy. Our results showed that the different formulations of n3-PUFAs have a beneficial effect on cell viability and proliferation and are able to restore oxidative induced RPE damage. We observed that the n3-PUFA provided different results alone or combined in the same supplement. When combined, the best results were obtained in formulations that included a higher proportion of EPA than DHA. Moreover, n3-PUFA in the form of ethyl-esters had a worse performance when compared with triglycerides or phospholipid based formulations.


2019 ◽  
Vol 20 (15) ◽  
pp. 3773 ◽  
Author(s):  
Mostafa Kiamehr ◽  
Alexa Klettner ◽  
Elisabeth Richert ◽  
Ali Koskela ◽  
Arto Koistinen ◽  
...  

In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.


2019 ◽  
Author(s):  
Divya Sinha ◽  
Benjamin Steyer ◽  
Pawan K. Shahi ◽  
Katherine Mueller ◽  
Rasa Valiauga ◽  
...  

AbstractDominantly inherited disorders are not typically considered therapeutic candidates for gene augmentation. Here, we utilized patient-specific induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in iPSC-RPE models of recessive bestrophinopathy and dominant Best disease caused by two different ion binding domain mutations. A dominant Best disease iPSC-RPE model that did not respond to gene augmentation showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then tested gene editing in all three dominant Best disease iPSC-RPE models, which produced premature stop codons exclusively within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of RPE transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some dominant Best disease patients and that non-responders are candidates for alternate approaches such as genome editing. However, testing genome editing strategies for on-target efficiency and off-target events using patient-matched iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected patients.SignificanceDominantly inherited disorders pose distinct challenges for gene therapies, particularly in the face of extreme mutational diversity. We tested whether a broad gene replacement strategy could reverse the cellular phenotype of Best disease, a dominant blinding condition that targets retinal pigment epithelium (RPE). Using RPE generated from patient-specific induced pluripotent stem cells (iPSCs), we show that gene replacement functionally overcomes some, but not all, of the tested mutations. In comparison, all dominant Best disease models tested were phenotypically corrected after mutation-specific genome editing, although one off-target genomic alteration was discovered. Our results support a two-tiered approach to gene therapy for Best disease, guided by safety and efficacy testing in iPSC-RPE models to maximize personal and public health value.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 128
Author(s):  
Lilia A. Chtcheglova ◽  
Andreas Ohlmann ◽  
Danila Boytsov ◽  
Peter Hinterdorfer ◽  
Siegfried G. Priglinger ◽  
...  

The maintenance of visual function is supported by the proper functioning of the retinal pigment epithelium (RPE), representing a mosaic of polarized cuboidal postmitotic cells. Damage factors such as inflammation, aging, or injury can initiate the migration and proliferation of RPE cells, whereas they undergo a pseudo-metastatic transformation or an epithelial to mesenchymal transition (EMT) from cuboidal epithelioid into fibroblast-like or macrophage-like cells. This process is recognized as a key feature in several severe ocular pathologies, and is mimicked by placing RPE cells in culture, which provides a reasonable and well-characterized in vitro model for a type 2 EMT. The most obvious characteristic of EMT is the cell phenotype switching, accompanied by the cytoskeletal reorganization with changes in size, shape, and geometry. Atomic force microscopy (AFM) has the salient ability to label-free explore these characteristics. Based on our AFM results supported by the genetic analysis of specific RPE differentiation markers, we elucidate a scheme for gradual transformation from the cobblestone to fibroblast-like phenotype. Structural changes in the actin cytoskeletal reorganization at the early stages of EMT lead to the development of characteristic geodomes, a finding that may reflect an increased propensity of RPE cells to undergo further EMT and thus become of diagnostic significance.


2020 ◽  
Author(s):  
Xiaoling Guo ◽  
Deliang Zhu ◽  
Ruiling Lian ◽  
Qiaolang Zeng ◽  
Sanjana Mathew ◽  
...  

Abstract Background: Retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSCs) exhibit great promise in treating retinal degenerative diseases. Here, we would explore the feasibility of non-colony dissociated hiPSCs to differentiate into functional RPE cells (hiPSC-RPE), and offer an alternative transplantation method based on cell spheroids.Methods: hiPSC-RPE cells were identified using reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence assay, Western blotting, and flow cytometry assay. The functions of hiPSC-RPE cells in vitro and in vivo were assessed by fluorescein leakage test, transepithelial electrical resistance (TEER) assay, atomic force microscopy observation, POS phagocytosis assay, frozen tissue sections, live/dead assay, SA-β-Gal staining, and immunocytochemistry.Results: hiPSC-RPE cells positively expressed biomarkers of RPE cells but not iPSCs, such as CRALBP (97.4%), EMMPRIN (93.8%), Oct4 (2.1%), and Sox2 (2.0%). hiPSC-RPE cells displayed RPE-like characteristics including barrier function, phagocytic activity, and polarized membrane. The cells derived from hiPSC-RPE spheroids positively expressed Nestin and exhibited reduced SA-β-Gal staining. hiPSC-RPE cell spheroids could form monolayer on decellularized corneal matrixes (DCM). After one month of subretinal transplantation, hiPSC-RPE cell spheroids could survive and maintain segmental sheet growth in sodium iodate (NaIO3) induced RPE-degenerated chinchilla rabbits. Conclusion: This study suggested that non-colony dissociated hiPSCs were effectively differentiated into functional RPE cells, and hiPSC-RPE cell spheroids maintained segmental sheet growth in the subretinal of RPE degenerate chinchilla rabbits in vivo, which may lay the foundation for cell spheroid transplantation as an alternative method for RPE degenerative disease therapy in the future.


Sign in / Sign up

Export Citation Format

Share Document