Single-cell RNA sequencing of adultDrosophilaovary identifies transcriptional programs governing oogenesis

2019 ◽  
Author(s):  
Allison Jevitt ◽  
Deeptiman Chatterjee ◽  
Gengqiang Xie ◽  
Xian-Feng Wang ◽  
Taylor Otwell ◽  
...  

AbstractOogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modelled extensively using theDrosophilaovary. While different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic dataset for the adultDrosophilaovary and connected tissues. This dataset captures the entire transcriptional trajectory of the developing follicle cell population over time. Our findings provide detailed insight into processes such as cell-cycle switching, migration, symmetry breaking, nurse cell engulfment, egg-shell formation, and signaling during corpus luteum formation, marking a newly identified oogenesis-to-ovulation transition. Altogether, these findings provide a broad perspective on oogenesis at a single-cell resolution while revealing new genetic markers and fate-specific transcriptional signatures to facilitate future studies.

Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Francesca Pia Caruso ◽  
Luciano Garofano ◽  
Fulvio D'Angelo ◽  
Kai Yu ◽  
Fuchou Tang ◽  
...  

ABSTRACT Background Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. Results We present a novel method, single-cell Tumor–Host Interaction tool (scTHI), to identify significantly activated ligand–receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand–receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. Conclusions Our results provide a complete map of the active tumor–host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.


2020 ◽  
Author(s):  
Xiangru Shen ◽  
Xuefei Wang ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

Abstract Single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets is unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve, CD8 Naïve and CD4 memory were mainly clustered into their scCPop counterparts, while the other T cell subsets were clustered into multiple scCPops including unexpected mucosal-associated invariant T cell and natural killer T cell. Most interestingly, we discovered a new T cell type that highly expressed Interferon Signaling Associated Genes (ISAGs), namely IFNhi T. We further enriched IFNhi T for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE after removing ISAGs, and IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ cells and BST2- cells showing different efficiencies of T cell activation indicates high ISAGs may contribute to quick immune responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin Zou ◽  
Tongda Zhang ◽  
Ruilong Zhou ◽  
Xiaosen Jiang ◽  
Huanming Yang ◽  
...  

It is well recognized that batch effect in single-cell RNA sequencing (scRNA-seq) data remains a big challenge when integrating different datasets. Here, we proposed deepMNN, a novel deep learning-based method to correct batch effect in scRNA-seq data. We first searched mutual nearest neighbor (MNN) pairs across different batches in a principal component analysis (PCA) subspace. Subsequently, a batch correction network was constructed by stacking two residual blocks and further applied for the removal of batch effects. The loss function of deepMNN was defined as the sum of a batch loss and a weighted regularization loss. The batch loss was used to compute the distance between cells in MNN pairs in the PCA subspace, while the regularization loss was to make the output of the network similar to the input. The experiment results showed that deepMNN can successfully remove batch effects across datasets with identical cell types, datasets with non-identical cell types, datasets with multiple batches, and large-scale datasets as well. We compared the performance of deepMNN with state-of-the-art batch correction methods, including the widely used methods of Harmony, Scanorama, and Seurat V4 as well as the recently developed deep learning-based methods of MMD-ResNet and scGen. The results demonstrated that deepMNN achieved a better or comparable performance in terms of both qualitative analysis using uniform manifold approximation and projection (UMAP) plots and quantitative metrics such as batch and cell entropies, ARI F1 score, and ASW F1 score under various scenarios. Additionally, deepMNN allowed for integrating scRNA-seq datasets with multiple batches in one step. Furthermore, deepMNN ran much faster than the other methods for large-scale datasets. These characteristics of deepMNN made it have the potential to be a new choice for large-scale single-cell gene expression data analysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Melanie A. Brennan ◽  
Adam Z. Rosenthal

Clonal bacterial populations exhibit various forms of heterogeneity, including co-occurrence of cells with different morphological traits, biochemical properties, and gene expression profiles. This heterogeneity is prevalent in a variety of environments. For example, the productivity of large-scale industrial fermentations and virulence of infectious diseases are shaped by cell population heterogeneity and have a direct impact on human life. Due to the need and importance to better understand this heterogeneity, multiple methods of examining single-cell heterogeneity have been developed. Traditionally, fluorescent reporters or probes are used to examine a specific gene of interest, providing a useful but inherently biased approach. In contrast, single-cell RNA sequencing (scRNA-seq) is an agnostic approach to examine heterogeneity and has been successfully applied to eukaryotic cells. Unfortunately, current extensively utilized methods of eukaryotic scRNA-seq present difficulties when applied to bacteria. Specifically, bacteria have a cell wall which makes eukaryotic lysis methods incompatible, bacterial mRNA has a shorter half-life and lower copy numbers, and isolating an individual bacterial species from a mixed community is difficult. Recent work has demonstrated that these technical hurdles can be overcome, providing valuable insight into factors influencing microbial heterogeneity. This perspective describes the emerging microbial scRNA-seq toolkit. We outline the benefit of these new tools in elucidating numerous scientific questions in microbiological studies and offer insight about the possible rules that govern the segregation of traits in individual microbial cells.


2016 ◽  
Author(s):  
Valentine Svensson ◽  
Kedar Nath Natarajan ◽  
Lam-Ha Ly ◽  
Ricardo J Miragaia ◽  
Charlotte Labalette ◽  
...  

AbstractHigh-throughput single cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, and has revealed new cell types, and new insights into developmental process and stochasticity in gene expression. There are now several published scRNA-seq protocols, which all sequence transcriptomes from a minute amount of starting material. Therefore, a key question is how these methods compare in terms of sensitivity of detection of mRNA molecules, and accuracy of quantification of gene expression. Here, we assessed the sensitivity and accuracy of many published data sets based on standardized spike-ins with a uniform raw data processing pipeline. We developed a flexible and fast UMI counting tool (https://github.com/vals/umis) which is compatible with all UMI based protocols. This allowed us to relate these parameters to sequencing depth, and discuss the trade offs between the different methods. To confirm our results, we performed experiments on cells from the same population using three different protocols. We also investigated the effect of RNA degradation on spike-in molecules, and the average efficiency of scRNA-seq on spike-in molecules versus endogenous RNAs.


2017 ◽  
Author(s):  
Lihua Zhang ◽  
Shihua Zhang

AbstractSingle-cell RNA-sequencing (scRNA-seq) is a recent breakthrough technology, which paves the way for measuring RNA levels at single cell resolution to study precise biological functions. One of the main challenges when analyzing scRNA-seq data is the presence of zeros or dropout events, which may mislead downstream analyses. To compensate the dropout effect, several methods have been developed to impute gene expression since the first Bayesian-based method being proposed in 2016. However, these methods have shown very diverse characteristics in terms of model hypothesis and imputation performance. Thus, large-scale comparison and evaluation of these methods is urgently needed now. To this end, we compared eight imputation methods, evaluated their power in recovering original real data, and performed broad analyses to explore their effects on clustering cell types, detecting differentially expressed genes, and reconstructing lineage trajectories in the context of both simulated and real data. Simulated datasets and case studies highlight that there are no one method performs the best in all the situations. Some defects of these methods such as scalability, robustness and unavailability in some situations need to be addressed in future studies.


2021 ◽  
Author(s):  
Lijun Ma ◽  
Mariana Murea ◽  
Young A Choi ◽  
Ashok K. Hemal ◽  
Alexei V. Mikhailov ◽  
...  

The kidney is composed of multiple cell types, each with specific physiological functions. Single-cell RNA sequencing (scRNA-Seq) is useful for classifying cell-specific gene expression profiles in kidney tissue. Because viable cells are critical in scRNA-Seq analyses, we report an optimized cell dissociation process and the necessity for histological screening of human kidney sections prior to performing scRNA-Seq. We show that glomerular injury can result in loss of select cell types during the cell clustering process. Subsequent fluorescence microscopy confirmed reductions in cell-specific markers among the injured cells seen on kidney sections and these changes need to be considered when interpreting results of scRNA-Seq.


2021 ◽  
Author(s):  
Li Han ◽  
Carlos P Jara ◽  
Ou Wang ◽  
Sandra Thibivilliers ◽  
Rafał K. Wóycicki ◽  
...  

AbstractThe Pigskin architecture and physiology are similar to these of humans. Thus, the pig model is valuable for studying skin biology and testing therapeutics for skin diseases. The single-cell RNA sequencing technology allows quantitatively analyzing cell types, cell states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-Seq has been used to study mouse and human skins. However, studying pigskin with scRNA-Seq is still rare. Here we described a robust method for isolating and cryo-preserving pig single cells for scRNA-Seq. We showed that pigskin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Also, we showed that the subsequent single cells could be cryopreserved using DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study will be very valuable for the skin research scientific community.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009029
Author(s):  
Weimiao Wu ◽  
Yunqing Liu ◽  
Qile Dai ◽  
Xiting Yan ◽  
Zuoheng Wang

Single-cell RNA sequencing technology provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation methods to eight single-cell transcriptomic datasets and compared their performance. Our results demonstrated that G2S3 has superior overall performance in recovering gene expression, identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally efficient for imputation in large-scale single-cell transcriptomic datasets.


Sign in / Sign up

Export Citation Format

Share Document