scholarly journals Individual neuronal subtypes control initial myelin sheath growth and stabilization

2019 ◽  
Author(s):  
Heather N. Nelson ◽  
Anthony J. Treichel ◽  
Erin N. Eggum ◽  
Madeline R. Martell ◽  
Amanda J. Kaiser ◽  
...  

AbstractBackgroundIn the developing central nervous system, pre-myelinating oligodendrocytes sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize, leading to the initiation of axon wrapping, nascent myelin sheath formation, concentric wrapping and sheath elongation, and sheath stabilization or pruning by oligodendrocytes. Although axonal signals influence the overall process of myelination, the precise oligodendrocyte behaviors that require signaling from axons are not completely understood. In this study, we investigated whether oligodendrocyte behaviors during the early events of myelination are mediated by an oligodendrocyte-intrinsic myelination program or are over-ridden by axonal factors.MethodsTo address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish spinal cord during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes.ResultsIn the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and stabilization frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When descending reticulospinal axons were ablated, local spinal axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons.ConclusionWe conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Heather N. Nelson ◽  
Anthony J. Treichel ◽  
Erin N. Eggum ◽  
Madeline R. Martell ◽  
Amanda J. Kaiser ◽  
...  

Abstract Background In the developing central nervous system, pre-myelinating oligodendrocytes sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize, leading to the initiation of axon wrapping, nascent myelin sheath formation, concentric wrapping and sheath elongation, and sheath stabilization or pruning by oligodendrocytes. Although axonal signals influence the overall process of myelination, the precise oligodendrocyte behaviors that require signaling from axons are not completely understood. In this study, we investigated whether oligodendrocyte behaviors during the early events of myelination are mediated by an oligodendrocyte-intrinsic myelination program or are over-ridden by axonal factors. Methods To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish spinal cord during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. Results In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and stabilization frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When descending reticulospinal axons were ablated, local spinal axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. Conclusion We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1301-1309 ◽  
Author(s):  
R. Tuttle ◽  
W.D. Matthew

Neurons can be categorized in terms of where their axons project: within the central nervous system, within the peripheral nervous system, or through both central and peripheral environments. Examples of these categories are cerebellar neurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons, respectively. When explants containing one type of neuron were placed between cryosections of neonatal or adult sciatic nerve and neonatal spinal cord, the neurites exhibited a strong preference for the substrates that they would normally encounter in vivo: cerebellar neurites generally extended only on spinal cord, sympathetic neurites on sciatic nerve, and DRG neurites on both. Neurite growth from DRG neurons has been shown to be stimulated by neurotrophins. To determine whether neurotrophins might also affect the substrate preferences of neurites, DRG were placed between cryosections of neonatal spinal cord and adult sciatic nerve and cultured for 36 to 48 hours in the presence of various neurotrophins. While DRG cultured in NGF-containing media exhibited neurite growth over both spinal cord and sciatic nerve substrates, in the absence of neurotrophins DRG neurites were found almost exclusively on the CNS cryosection. To determine whether these neurotrophin-dependent neurite patterns resulted from the selective survival of subpopulations of DRG neurons with distinct neurite growth characteristics, a type of rescue experiment was performed: DRG cultured in neurotrophin-free medium were fed with NGF-containing medium after 36 hours in vitro and neurite growth examined 24 hours later; most DRG exhibited extensive neurite growth on both peripheral and central nervous system substrates.(ABSTRACT TRUNCATED AT 250 WORDS)


Mitochondrion ◽  
2015 ◽  
Vol 23 ◽  
pp. 32-41 ◽  
Author(s):  
Sergio Gonzalez ◽  
Ruani Fernando ◽  
Jade Berthelot ◽  
Claire Perrin-Tricaud ◽  
Emmanuelle Sarzi ◽  
...  

2020 ◽  
Author(s):  
David O. Dias ◽  
Jannis Kalkitsas ◽  
Yildiz Kelahmetoglu ◽  
Cynthia P. Estrada ◽  
Jemal Tatarishvili ◽  
...  

AbstractFibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models developing fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes.We uncover pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.


Author(s):  
Angela D. Morris ◽  
Sarah Kucenas

Background: Lysolecithin is commonly used to induce demyelinating lesions in the spinal cord and corpus callosum of mammalian models. Although these models and clinical patient samples are used to study neurodegenerative diseases, such as multiple sclerosis (MS), they do not allow for direct visualization of disease-related damage in vivo. To overcome this limitation, we created and characterized a focal lysolecithin injection model in zebrafish that allows us to investigate the temporal dynamics underlying lysolecithin-induced damage in vivo.Results: We injected lysolecithin into 4–6 days post-fertilization (dpf) zebrafish larval spinal cords and, coupled with in vivo, time-lapse imaging, observed hallmarks consistent with mammalian models of lysolecithin-induced demyelination, including myelinating glial cell loss, myelin perturbations, axonal sparing, and debris clearance.Conclusion: We have developed and characterized a lysolecithin injection model in zebrafish that allows us to investigate myelin damage in a living, vertebrate organism. This model may be a useful pre-clinical screening tool for investigating the safety and efficacy of novel therapeutic compounds that reduce damage and/or promote repair in neurodegenerative disorders, such as MS.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1228-1229
Author(s):  
Christopher S. Wallace ◽  
Michael A. Silverman ◽  
Michelle A. Burack ◽  
Janis E. Lochner ◽  
Richard G. Allen ◽  
...  

Recent technical advances in the ability to attach an endogenously fluorescent protein sequence—i.e., green fluorescent protein or GFP and its derivatives--to any protein of experimental interest promises to mark a new era of progress in the study of protein targeting. Bringing these new tools to bear on neurons of the central nervous system has been challenging, however, because they have a very complex structure and are relatively difficult to transfect because they are post-mitotic.We use two cell culture approaches to characterize protein trafficking within neurons of the central nervous system in vitro. The first is a dissociated culture of hippocampal neurons from embryonic (El8) rats which is especially suited to analysis by conventional light microscopy because these neurons are grown on glass coverslips at low density. Neurons cultured in this way develop a morphology comparable to that seen in vivo and permit the establishment of axons and dendrites to be analyzed by time-lapse microscopy.


2002 ◽  
Vol 158 (4) ◽  
pp. 709-718 ◽  
Author(s):  
Stéphane Genoud ◽  
Corinna Lappe-Siefke ◽  
Sandra Goebbels ◽  
Freddy Radtke ◽  
Michel Aguet ◽  
...  

We have selectively inhibited Notch1 signaling in oligodendrocyte precursors (OPCs) using the Cre/loxP system in transgenic mice to investigate the role of Notch1 in oligodendrocyte (OL) development and differentiation. Early development of OPCs appeared normal in the spinal cord. However, at embryonic day 17.5, premature OL differentiation was observed and ectopic immature OLs were present in the gray matter. At birth, OL apoptosis was strongly increased in Notch1 mutant animals. Premature OL differentiation was also observed in the cerebrum, indicating that Notch1 is required for the correct spatial and temporal regulation of OL differentiation in various regions of the central nervous system. These findings establish a widespread function of Notch1 in the late steps of mammalian OPC development in vivo.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rahul Sachdeva ◽  
Kaitlin Farrell ◽  
Mary-Katharine McMullen ◽  
Jeffery L. Twiss ◽  
John D. Houle

Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.


Sign in / Sign up

Export Citation Format

Share Document