scholarly journals Investigating the Central Dogma of Molecular Biology in the Context of Nuclear Architecture and Cell Cycle

2019 ◽  
Author(s):  
Shivnarayan Dhuppar ◽  
Aprotim Mazumder

AbstractNuclear architecture is the organization of the genome within a cell nucleus with respect to different nuclear landmarks such as nuclear lamina, matrix or nucleoli. Lately it has emerged as a major regulator of gene expression in mammalian cells. The studies connecting nuclear architecture with gene expression are largely population-averaged and do not report on the heterogeneity in genome organization or in gene expression within a population. In this report we present a method for combining 3D DNA Fluorescence in situ Hybridization (FISH) with single molecule RNA FISH (smFISH) and immunofluorescence to study nuclear architecture-dependent gene regulation on a cell-by-cell basis. We further combine it with an imaging-based cell cycle staging to correlate nuclear architecture with gene expression across the cell cycle. We present this in the context of Cyclin A2 (CCNA2) gene for its known cell cycle-dependent expression. We show that, across the cell cycle, the expression of a CCNA2 gene copy is stochastic and depends neither on its sub-nuclear position—which usually lies close to nuclear lamina—nor on the expression from the other copies.

2019 ◽  
Vol 116 (39) ◽  
pp. 19490-19499 ◽  
Author(s):  
Chenglong Xia ◽  
Jean Fan ◽  
George Emanuel ◽  
Junjie Hao ◽  
Xiaowei Zhuang

The expression profiles and spatial distributions of RNAs regulate many cellular functions. Image-based transcriptomic approaches provide powerful means to measure both expression and spatial information of RNAs in individual cells within their native environment. Among these approaches, multiplexed error-robust fluorescence in situ hybridization (MERFISH) has achieved spatially resolved RNA quantification at transcriptome scale by massively multiplexing single-molecule FISH measurements. Here, we increased the gene throughput of MERFISH and demonstrated simultaneous measurements of RNA transcripts from ∼10,000 genes in individual cells with ∼80% detection efficiency and ∼4% misidentification rate. We combined MERFISH with cellular structure imaging to determine subcellular compartmentalization of RNAs. We validated this approach by showing enrichment of secretome transcripts at the endoplasmic reticulum, and further revealed enrichment of long noncoding RNAs, RNAs with retained introns, and a subgroup of protein-coding mRNAs in the cell nucleus. Leveraging spatially resolved RNA profiling, we developed an approach to determine RNA velocity in situ using the balance of nuclear versus cytoplasmic RNA counts. We applied this approach to infer pseudotime ordering of cells and identified cells at different cell-cycle states, revealing ∼1,600 genes with putative cell cycle-dependent expression and a gradual transcription profile change as cells progress through cell-cycle stages. Our analysis further revealed cell cycle-dependent and cell cycle-independent spatial heterogeneity of transcriptionally distinct cells. We envision that the ability to perform spatially resolved, genome-wide RNA profiling with high detection efficiency and accuracy by MERFISH could help address a wide array of questions ranging from the regulation of gene expression in cells to the development of cell fate and organization in tissues.


2003 ◽  
Vol 133 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Frédéric Delmas ◽  
Johann Petit ◽  
Jérôme Joubès ◽  
Martial Séveno ◽  
Thomas Paccalet ◽  
...  

2020 ◽  
Author(s):  
Pierre-Olivier Estève ◽  
Udayakumar S. Vishnu ◽  
Hang Gyeong Chin ◽  
Sriharsa Pradhan

AbstractChromatin accessibility is a predictor of gene expression, cell division and cell type specificity. NicE-viewSeq (Nicking Enzyme assisted viewing and Sequencing) allows accessible chromatin visualization and sequencing with overall lower mitochondrial DNA and duplicated sequences interference relative to ATAC-see. Using NicE-viewSeq, we interrogated the accessibility of chromatin in a cell cycle (G1, S and G2/M) - specific manner using mammalian cells. Despite DNA replication and subsequent condensation of chromatin to chromosomes, chromatin accessibility remained generally preserved with minimal subtle alterations. Genome-wide alteration of chromatin accessibility within TSS and enhancer elements gradually decreased as cells progressed from G1 to G2M, with distinct differential accessibility near consensus transcription factors sites. Inhibition of histone deacetylases promoted accessible chromatin within gene bodies, correlating with apoptotic gene expression. In addition, reduced chromatin accessibility for the MYC oncogene pathway correlated with down regulation of pertinent genes. Surprisingly, repetitive RNA loci expression remained unaltered following histone acetylation-mediated increased accessibility. Therefore, we suggest that subtle changes in chromatin accessibility is a prerequisite during cell cycle and histone deacetylase inhibitor mediated therapeutics.


1995 ◽  
Vol 6 (12) ◽  
pp. 1673-1684 ◽  
Author(s):  
D R Kellogg ◽  
K Oegema ◽  
J Raff ◽  
K Schneider ◽  
B M Alberts

DMAP190 is a microtubule-associated protein from Drosophila that is localized to the centrosome. In a previous study, we used affinity chromatography to identify proteins that interact with DMAP190, and identified a 60-kDa protein that we named DMAP60 (Kellogg and Alberts, 1992). Like DMAP190, DMAP60 interacts with microtubules and is localized to the centrosome, and the two proteins associate as part of a multiprotein complex. We now report the cloning and sequencing of the cDNA encoding DMAP60. The amino acid sequence of DMAP60 is not homologous to any protein in the database, although it contains six consensus sites for phosphorylation by cyclin-dependent kinases. As judged by in situ hybridization, the gene for DMAP60 maps to chromosomal region 46A. In agreement with others working on Drosophila centrosomal proteins, we have changed the names for DMAP190 and DMAP60 to CP190 and CP60, respectively, to give these proteins a consistent nomenclature. Antibodies that recognize CP60 reveal that it is localized to the centrosome in a cell cycle-dependent manner. The amount of CP60 at the centrosome is maximal during anaphase and telophase, and then drops dramatically during late telophase or early interphase. This dramatic disappearance of CP60 may be due to specific proteolysis, because CP60 contains a sequence of amino acids similar to the "destruction box" that targets cyclins for proteolysis at the end of mitosis. Starting with nuclear cycle 12, CP60 and CP190 are both found in the nucleus during interphase. CP60 isolated from Drosophila embryos is highly phosphorylated, and dephosphorylated CP60 is a good substrate for cyclin B/p34cdc2 kinase complexes. A second kinase activity capable of phosphorylating CP60 is present in the CP60/CP190 multiprotein complex. We find that bacterially expressed CP60 binds to purified microtubules, and this binding is blocked by CP60 phosphorylation.


2019 ◽  
Vol 218 (3) ◽  
pp. 820-838 ◽  
Author(s):  
Colin E. Delaney ◽  
Stephen P. Methot ◽  
Micol Guidi ◽  
Iskra Katic ◽  
Susan M. Gasser ◽  
...  

The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle–dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.


2017 ◽  
Author(s):  
J. Guan ◽  
H. Liu ◽  
X. Shi ◽  
S. Feng ◽  
B. Huang

AbstractLive imaging of genome has offered important insights into the dynamics of the genome organization and gene expression. The demand to image simultaneously multiple genomic loci has prompted a flurry of exciting advances in multi-color CRISPR imaging, although color-based multiplexing is limited by the need for spectrally distinct fluorophores. Here we introduce an approach to achieve highly multiplexed live recording via correlative CRISPR imaging and sequential DNA fluorescence in situ hybridization (FISH). This approach first performs one-color live imaging of multiple genomic loci and then uses sequential rounds of DNA FISH to determine the loci identity. We have optimized the FISH protocol so that each round is complete in 1 min, demonstrating the identification of 7 genomic elements and the capability to sustain reversible staining and washing for up to 20 rounds. We have also developed a correlation-based algorithm to faithfully register live and FISH images. Our approach keeps the rest of the color palette open to image other cellular phenomena of interest, as demonstrated by our simultaneous live imaging of genomic loci together with a cell cycle reporter. Furthermore, the algorithm to register faithfully between live and fixed imaging is directly transferrable to other systems such as multiplex RNA imaging with RNA-FISH and multiplex protein imaging with antibody-staining.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Erick Bermúdez-Méndez ◽  
Eugene A. Katrukha ◽  
Cindy M. Spruit ◽  
Jeroen Kortekaas ◽  
Paul J. Wichgers Schreur

AbstractBunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.


Sign in / Sign up

Export Citation Format

Share Document