scholarly journals The Gene Expression and Enzyme Activity of Plant 3-Deoxy-D-Manno-2-Octulosonic Acid-8-Phosphate Synthase Are Preferentially Associated with Cell Division in a Cell Cycle-Dependent Manner

2003 ◽  
Vol 133 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Frédéric Delmas ◽  
Johann Petit ◽  
Jérôme Joubès ◽  
Martial Séveno ◽  
Thomas Paccalet ◽  
...  
2019 ◽  
Vol 218 (3) ◽  
pp. 820-838 ◽  
Author(s):  
Colin E. Delaney ◽  
Stephen P. Methot ◽  
Micol Guidi ◽  
Iskra Katic ◽  
Susan M. Gasser ◽  
...  

The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle–dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.


2015 ◽  
Vol 35 (23) ◽  
pp. 4043-4052 ◽  
Author(s):  
Junyue Xing ◽  
Jie Yi ◽  
Xiaoyu Cai ◽  
Hao Tang ◽  
Zhenyun Liu ◽  
...  

The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without alteringCDK1mRNA levels. Further studies revealed that NSun2 methylatedCDK1mRNAin vitroand in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle.


2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

2016 ◽  
Vol 3 (12) ◽  
pp. 160578 ◽  
Author(s):  
Mohammad Soltani ◽  
Abhyudai Singh

Expression of many genes varies as a cell transitions through different cell-cycle stages. How coupling between stochastic expression and cell cycle impacts cell-to-cell variability (noise) in the level of protein is not well understood. We analyse a model where a stable protein is synthesized in random bursts, and the frequency with which bursts occur varies within the cell cycle. Formulae quantifying the extent of fluctuations in the protein copy number are derived and decomposed into components arising from the cell cycle and stochastic processes. The latter stochastic component represents contributions from bursty expression and errors incurred during partitioning of molecules between daughter cells. These formulae reveal an interesting trade-off: cell-cycle dependencies that amplify the noise contribution from bursty expression also attenuate the contribution from partitioning errors. We investigate the existence of optimum strategies for coupling expression to the cell cycle that minimize the stochastic component. Intriguingly, results show that a zero production rate throughout the cell cycle, with expression only occurring just before cell division, minimizes noise from bursty expression for a fixed mean protein level. By contrast, the optimal strategy in the case of partitioning errors is to make the protein just after cell division. We provide examples of regulatory proteins that are expressed only towards the end of the cell cycle, and argue that such strategies enhance robustness of cell-cycle decisions to the intrinsic stochasticity of gene expression.


2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


2019 ◽  
Vol 47 (16) ◽  
pp. 8439-8451 ◽  
Author(s):  
Alberto González-Medina ◽  
Elena Hidalgo ◽  
José Ayté

Abstract In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.


2015 ◽  
Vol 11 (6) ◽  
pp. e1004971 ◽  
Author(s):  
Pierre Génin ◽  
Frédérique Cuvelier ◽  
Sandrine Lambin ◽  
Josina Côrte-Real Filipe ◽  
Elodie Autrusseau ◽  
...  

2004 ◽  
Vol 297 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Noriko Yasuhara ◽  
Eri Takeda ◽  
Hitomi Inoue ◽  
Ippei Kotera ◽  
Yoshihiro Yoneda

2003 ◽  
Vol 8 (11) ◽  
pp. 889-896 ◽  
Author(s):  
Takayuki Hattori ◽  
Kyoko Kitagawa ◽  
Chiharu Uchida ◽  
Toshiaki Oda ◽  
Masatoshi Kitagawa

Sign in / Sign up

Export Citation Format

Share Document