scholarly journals Targeting Lysyl oxidase-like 2 in Idiopathic Pulmonary Fibrosis

2019 ◽  
Author(s):  
Milena S. Espindola ◽  
David M Habiel ◽  
Ana Lucia Coelho ◽  
Amanda Mikels-Vigdal ◽  
Cory M. Hogaboam

AbstractThe composition of extracellular matrix (ECM) is altered during pathologic scarring in damaged organs including the lung. One major change in the ECM involves the cross-linking of collagen, which promotes fibroblast to myofibroblast differentiation.ObjectiveWe examined the role of lysyl oxidase (LOX)-like 2 in lung fibroblasts cultured from normal or IPF lung samples and in a humanized mouse model of IPF using a monoclonal antibody (Simtuzumab).Research Design and MethodsPrimary lung fibroblasts from normal donor lungs and IPF lung explants were examined for expression of LOXL2. Targeting LOXL2 with Simtuzumab on normal and IPF fibroblasts was examined both in vitro and in vivo for synthetic, functional, and profibrotic properties.ResultsLOXL2 was increased at transcript and protein level in IPF compared with normal lung samples. In a dose-dependent manner, Simtuzumab enhanced differentiation of fibroblasts into myofibroblasts. Inhibition of LOXL2 also enhanced fibroblast invasion and accelerated the outgrowth of fibroblasts from dissociated human lung cell preparations. Finally, preventative or delayed delivery of Simtuzumab enhanced lung fibrosis in a humanized mouse model of pulmonary fibrosis.ConclusionConsistent with its failure in a Phase 2 clinical trial, Simtuzumab exhibited no therapeutic efficacy in translational in vitro and in vivo assays.


2015 ◽  
Vol 14 (1) ◽  
Author(s):  
De-Kuan Chang ◽  
Raymond J. Moniz ◽  
Zhongyao Xu ◽  
Jiusong Sun ◽  
Sabina Signoretti ◽  
...  


2020 ◽  
Author(s):  
Elizabeth F. Redente ◽  
Sangeeta Chakraborty ◽  
Satria Sajuthi ◽  
Bart P. Black ◽  
Benjamin L. Edelman ◽  
...  

ABSTRACTIdiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic disease of the distal lung alveoli that culminates in respiratory failure and reduced lifespan. Unlike normal lung repair in response to injury, IPF is associated with the accumulation and persistence of fibroblasts and myofibroblasts and continued production of collagen and other extracellular matrix (ECM) components. Prior in vitro studies have led to the hypothesis that the development of resistance to Fas-induced apoptosis by lung fibroblasts and myofibroblasts contibributes to their accumulation in the distal lung tissues of IPF patients. Here, we test this hypothesis in vivo in the resolving model of bleomycin-induced pulmonary fibrosis in mice. Using genetic loss-of-function approaches to inhibit Fas signaling in fibroblasts, novel flow cytometry strategies to quantify lung fibroblast subsets and transcriptional profiling of lung fibroblasts by bulk and single cell RNA-sequencing, we show that Fas is necessary for lung fibroblast apoptosis during homeostatic resolution of bleomycin-induced pulmonary fibrosis in vivo. Furthermore, we show that loss of Fas signaling leads to the persistence and continued pro-fibrotic functions of lung fibroblasts. Our studies provide novel insights into the mechanisms that contribute to fibroblast survival, persistence and continued ECM deposition in the context of IPF and how failure to undergo Fas-induced apoptosis prevents fibrosis resolution.



2018 ◽  
Vol 63 (3) ◽  
Author(s):  
Paul R. Gilson ◽  
William Nguyen ◽  
William A. Poole ◽  
Jose E. Teixeira ◽  
Jennifer K. Thompson ◽  
...  

ABSTRACT A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound’s capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.



2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Wenzhong Wei ◽  
Joshua Wiggins ◽  
Duoyi Hu ◽  
Vladimir Vrbanac ◽  
Dane Bowder ◽  
...  

ABSTRACT Lactobacillus bacteria are potential delivery vehicles for biopharmaceutical molecules because they are well-recognized as safe microorganisms that naturally inhabit the human body. The goal of this study was to employ these lactobacilli to combat human immunodeficiency virus type 1 (HIV-1) infection and transmission. By using a chromosomal integration method, we engineered Lactobacillus acidophilus ATCC 4356 to display human CD4, the HIV-1 receptor, on the cell surface. Since human CD4 can bind to any infectious HIV-1 particles, the engineered lactobacilli can potentially capture HIV-1 of different subtypes and prevent infection. Our data demonstrate that the CD4-carrying bacteria are able to adsorb HIV-1 particles and reduce infection significantly in vitro and also block intrarectal HIV-1 infection in a humanized mouse model in preliminary tests in vivo. Our results support the potential of this approach to decrease the efficiency of HIV-1 sexual transmission. IMPORTANCE In the absence of an effective vaccine, alternative approaches to block HIV-1 infection and transmission with commensal bacteria expressing antiviral proteins are being considered. This report provides a proof-of-concept by using Lactobacillus bacteria stably expressing the HIV-1 receptor CD4 to capture and neutralize HIV-1 in vitro and in a humanized mouse model. The stable expression of antiviral proteins, such as CD4, following genomic integration of the corresponding genes into this Lactobacillus strain may contribute to the prevention of HIV-1 sexual transmission.



2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2612-2612
Author(s):  
James G. Keck ◽  
Mingshan Cheng ◽  
Michael Brehm ◽  
Dale Greiner ◽  
Lenny J. Shultz ◽  
...  

2612 Background: Although antibodies and CART cells therapies have been successfully used for cancer therapy, they can have lethal adverse effects such as cytokine release syndrome (CRS). The animal models and in vitro human PBMC assays presently in use can’t reliably predict the CRS in patients. A predictive marker for identifying patients at risk for developing CRS upfront would improve the safety of immune-oncology drug development. Methods: We have developed a rapid, sensitive and reproducible in vivo humanized mouse model for quantitating CRS. The NSG mouse and its derivatives are engrafted with human PBMCs. On day 6 we induced cytokines release with pembrolizumab, avelumab, atezolizumab, ipilimumab, anti-CD28, ATG and OKT3 in single dose; as well as combination treatments involving pembrolizumab, lenalidomide, ATG and anti-CD28. Furthermore, we compared our method versus the in vitro PBMC assay. The cytokine levels were also compared to the dose response. Results: There are about 10-15% CD45+ human cells on day 5 of engraftment; and among of them, there were approximately 70% CD3 T cells and 25% CD56 NK cells. All tested cytokines, human IFN-γ, IL-2, IL-4, IL-6, IL-10 and TNF were upregulated after 2 and 6 hours of OKT3, ATG, anti-CD28, pembrolizumab, avelumab and atezolizumab drug treatment. Mouse’s rectal temperatures dropped from 37-38 °C to about 36 °C at 6 hours’ time point in the treated groups. There is various cytokines release levels, low to high response in different donors with anti-CD28 treatment. All donors showed high response to OKT3. The cytokine release levels were consistent with a dose response or variable PBMC engraftment. The cytokine levels were also higher in some drug combination studies such as pembrolizumab combined with lenalidomide or ATG; anti-CD28 combined with ATG. Our in vivo method was able to determine CRS missed in the in vitro testing method. Conclusions: We have developed a rapid, sensitive and reproducible novel in vivo PBMC humanized mouse model that is able to differentiate human PBMC donors based on individual safety response to single agent and combination therapeutics of immune checkpoint inhibitors and possibly CAR-T therapy. This assay could be employed in future drug development.



2021 ◽  
Author(s):  
E. Marchal-Duval ◽  
M. Homps-Legrand ◽  
A. Froidure ◽  
M. Jaillet ◽  
M. Ghanem ◽  
...  

ABSTRACTMatrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF.PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-β/PGE2 balance in vitro in control and IPF fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones.PRRX1 inhibition decreased fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease.Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using precision-cut lung slices.Our results identified PRRX1 as a mesenchymal transcription factor driving lung fibrogenesis.Brief SummaryInhibition of a single fibroblast-associated transcription factor, namely paired-related homeobox protein 1, is sufficient to dampen lung fibrogenesis.



2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A22.1-A22
Author(s):  
C Reitinger ◽  
F Nimmerjahn

BackgroundRecent findings in cancer immunotherapy have reinforced the hypothesis that the immune system is able to control most cancers. Immunomodulatory antibodies can enhance immune responses, having the potential to generate anti-cancer immunity.1–4Materials and MethodsMost current studies addressing this question are performed in murine mouse model systems or use in vitro culture systems, which do not reflect the human in vivo situation, potentially leading to results that cannot be fully translated into human cancer therapy. Therefore, it is necessary to establish a new mouse model, which allows the study of cancer immunotherapy in the context of a human immune system. We focused on the establishment of a humanized mouse model, in which different immunomodulatory antibodies can be tested in the presence of a human immune system.ResultsFirst experiments concerning the suitability to test immunomodulatory antibodies in the humanized mouse model, revealed that effects of checkpoint-control antibody a-CTLA-4 were similar to the effects seen in patients of clinical studies. To analyse the anti-tumor activities of immunomodulatory antibodies in vivo we are establishing a human melanoma-like tumor model in humanized mice.ConclusionsThis enables us to test the efficacy of immunomodulatory agonistic antibodies (such as CP-870,893) and checkpoint control antibodies (such as anti-CTLA-4) in eliminating a melanoma-like tumor. Furthermore, parameters like tumor infiltrating human cells und cytokine/chemokine production can be analysed.ReferencesSchuster M, Nechansky A, Loibner H. Cancer immunotherapy. Biotechnol J 2006;1:138–147.Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature rev 2011;480:480–489.Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Annals of Oncology 2012;23:vii6–vii9.Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 in clinical trials. Expert Opin Biol Ther 2007;8:1245–1256.Disclosure InformationC. Reitinger: None. F. Nimmerjahn: None.



Sign in / Sign up

Export Citation Format

Share Document