scholarly journals Faculty Opinions recommendation of Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model.

Author(s):  
Nathaniel Landau
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria M. Klicznik ◽  
Ariane Benedetti ◽  
Laura M. Gail ◽  
Suraj R. Varkhande ◽  
Raimund Holly ◽  
...  

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
De-Kuan Chang ◽  
Raymond J. Moniz ◽  
Zhongyao Xu ◽  
Jiusong Sun ◽  
Sabina Signoretti ◽  
...  

2018 ◽  
Vol 63 (3) ◽  
Author(s):  
Paul R. Gilson ◽  
William Nguyen ◽  
William A. Poole ◽  
Jose E. Teixeira ◽  
Jennifer K. Thompson ◽  
...  

ABSTRACT A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound’s capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Wenzhong Wei ◽  
Joshua Wiggins ◽  
Duoyi Hu ◽  
Vladimir Vrbanac ◽  
Dane Bowder ◽  
...  

ABSTRACT Lactobacillus bacteria are potential delivery vehicles for biopharmaceutical molecules because they are well-recognized as safe microorganisms that naturally inhabit the human body. The goal of this study was to employ these lactobacilli to combat human immunodeficiency virus type 1 (HIV-1) infection and transmission. By using a chromosomal integration method, we engineered Lactobacillus acidophilus ATCC 4356 to display human CD4, the HIV-1 receptor, on the cell surface. Since human CD4 can bind to any infectious HIV-1 particles, the engineered lactobacilli can potentially capture HIV-1 of different subtypes and prevent infection. Our data demonstrate that the CD4-carrying bacteria are able to adsorb HIV-1 particles and reduce infection significantly in vitro and also block intrarectal HIV-1 infection in a humanized mouse model in preliminary tests in vivo. Our results support the potential of this approach to decrease the efficiency of HIV-1 sexual transmission. IMPORTANCE In the absence of an effective vaccine, alternative approaches to block HIV-1 infection and transmission with commensal bacteria expressing antiviral proteins are being considered. This report provides a proof-of-concept by using Lactobacillus bacteria stably expressing the HIV-1 receptor CD4 to capture and neutralize HIV-1 in vitro and in a humanized mouse model. The stable expression of antiviral proteins, such as CD4, following genomic integration of the corresponding genes into this Lactobacillus strain may contribute to the prevention of HIV-1 sexual transmission.


2019 ◽  
Vol 93 (10) ◽  
Author(s):  
George N. Llewellyn ◽  
Eduardo Seclén ◽  
Stephen Wietgrefe ◽  
Siyu Liu ◽  
Morgan Chateau ◽  
...  

ABSTRACTCombination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used anex vivolatency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use theex vivolatency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishesin vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCEHIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body’s immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
S. Landman ◽  
V. L. de Oliveira ◽  
M. Peppelman ◽  
E. Fasse ◽  
E. van Rijssen ◽  
...  

Background. Recent clinical trials using regulatory T cells (Treg) support the therapeutic potential of Treg-based therapy in transplantation and autoinflammatory diseases. Despite these clinical successes, the effect of Treg on inflamed tissues, as well as their impact on immune effector function in vivo, is poorly understood. Therefore, we here evaluated the effect of human Treg injection on cutaneous inflammatory processes in vivo using a humanized mouse model of human skin inflammation (huPBL-SCID-huSkin). Methods. SCID beige mice were transplanted with human skin followed by intraperitoneal (IP) injection of 20‐40×106 allogeneic human PBMCs. This typically results in human skin inflammation as indicated by epidermal thickening (hyperkeratosis) and changes in dermal inflammatory markers such as the antimicrobial peptide hBD2 and epidermal barrier cytokeratins K10 and K16, as well as T cell infiltration in the dermis. Ex vivo-expanded human Treg were infused intraperitoneally. Human cutaneous inflammation and systemic immune responses were analysed by immunohistochemistry and flow cytometry. Results. We confirmed that human Treg injection inhibits skin inflammation and the influx of effector T cells. As a novel finding, we demonstrate that human Treg injection led to a reduction of IL-17-secreting cells while promoting a relative increase in immunosuppressive FOXP3+ Treg in the human skin, indicating active immune regulation in controlling the local proinflammatory response. Consistent with the local control (skin), systemically (splenocytes), we observed that Treg injection led to lower frequencies of IFNγ and IL-17A-expressing human T cells, while a trend towards enrichment of FOXP3+ Treg was observed. Conclusion. Taken together, we demonstrate that inhibition of skin inflammation by Treg infusion, next to a reduction of infiltrating effector T cells, is mediated by restoring both the local and systemic balance between cytokine-producing effector T cells and immunoregulatory T cells. This work furthers our understanding of Treg-based immunotherapy.


2020 ◽  
Vol 4 (s1) ◽  
pp. 4-5
Author(s):  
Chase Daniel McCann ◽  
Elizabeth Zale ◽  
Adam Ward ◽  
Thomas Dilling ◽  
Ali Danesh ◽  
...  

OBJECTIVES/GOALS: HIV-specific CD8+ T-cells play a critical role in partially controlling viral replication in infected-individuals, but ultimately fail to eliminate infection. Enhancing these T-cell responses through lymphocyte engineering approaches has the potential as a novel therapy capable of achieving durable control or eradication of infection. METHODS/STUDY POPULATION: IL-15 Superagonist (IL-15SA) potently supports the in vivo persistence and antiviral activity of adoptively transferred CD8+ T-cells. The Deep-PrimingTM technology platform, developed by Torque, allows for loading of immunomodulators onto the surface of T-cells via electrostatic ‘nanogels’, which slowly release to deliver sustained autocrine immune stimulation without the harmful effects of systemic exposure. Here, we investigate the impact of IL-15SA Deep-Priming on HIV-specific CD8+ T-cells in a humanized mouse model of HIV infection. Humanized mice were generated by engrafting NOD-scid-IL2Rgnull mice with memory CD4+ T-cells isolated from an ARV-suppressed HIV+ donor. An autologous HIV-specific Cytotoxic T-Lymphocyte (CTL) clone was isolated, and killing potential confirmed. Four weeks post humanization, mice were infected with HIV and received an infusion of unmodified HIV-Specific CTLs, or IL-15SA Deep-Primed HIV-specific CTLs (CTL-DP). T-cell numbers and plasma viral loads were quantified weekly by flow cytometry and qRT-PCR. RESULTS/ANTICIPATED RESULTS: Mice receiving unmodified CTLs trended toward reduced viral loads compared to the No Treatment condition, while mice receiving CTL-DP saw significant, 2-Log10 reductions in VL (p < 0.01). At 41 days post-infection 100% (5/5) of the No Treatment, 66.7% (4/6) of the CTL treatment, and 16.7% (1/6) of CTL-DP treatment mice had detectable viremia. IL-15SA Deep-Priming increased CTL expansion and persistence in peripheral blood which correlated with improved CD4+T-cell preservation. DISCUSSION/SIGNIFICANCE OF IMPACT: Here we demonstrate the first in vivo analysis of IL-15SA Deep-Priming of HIV-Specific CTLs. These data suggest that Deep-Priming of patient T-cells can enhance in vivo function and persistence, leading to improved viral suppression; a significant advancement in the field of HIV cure research. CONFLICT OF INTEREST DESCRIPTION: Austin Boesch, Thomas Andresen, and Douglas Jones are employees of Torque. Darrell Irvine is a co-founder of Torque and Chairman of Torque’s Scientific Advisory Board.


2021 ◽  
Author(s):  
Shivkumar Biradar ◽  
Yash Agarwal ◽  
Michael T. Lotze ◽  
Charles R. Rinaldo ◽  
Moses T. Bility ◽  
...  

AbstractGamma-delta (γδ) T cells recognize antigens in an MHC-independent manner, with demonstrable cytotoxicity against cancer and virally infected cells. Human immunodeficiency virus (HIV) infection severely depletes the Vγ9Vδ2 (Vδ2) subset of these T cells in most infected individuals, with the exception of elite controllers. The capacity of Vδ2 cells to kill HIV-infected targets has been demonstrated in vitro, but this has not been verified in vivo. Here, we examined the immunotherapeutic potential of Vδ2 cells in controlling HIV replication in vivo and provide the first characterization of reconstituted γδ T cell subsets in the peripheral blood and lymphoid tissue in a humanized mouse model. We demonstrate the depletion of Vδ2 cells and increase in Vδ1 cells in the blood following HIV infection, similar to that observed in HIV-infected humans. The functionality of human Vδ2 cells isolated from humanized mice was confirmed via ex vivo expansion in response to zoledronate and IL-2 treatment. The adoptive transfer of activated Vδ2 cells failed to control HIV infection in vivo but instead exacerbated viremia by serving as early targets for HIV infection. Our findings suggest that Vδ2 cells play a critical and unappreciated role as early HIV targets of infection to promote viral dissemination.


Sign in / Sign up

Export Citation Format

Share Document