scholarly journals Comparison of in vitro and in planta toxicity of Vip3A for lepidopteran herbivores

2019 ◽  
Author(s):  
Muhammad Hassaan Khan ◽  
Georg Jander ◽  
Zahid Mukhtar ◽  
Muhammad Arshad ◽  
Muhammad Sarwar ◽  
...  

AbstractAgricultural pest infestation is as old as domestication of food crops and contributes a major share to the cost of crop production. Transgenic production of Vip3A, an insecticidal protein from Bacillus thuringiensis, effectively controls lepidopteran pests. A synthetic vip3A gene was evaluated its efficacy against Spodoptera litura (cotton leafworm), Spodoptera exigua (beet armyworm), Spodoptera frugiperda (fall armyworm), Helicoverpa armigera (cotton bollworm), Helicoverpa zea (corn earworm), Heliothis virescens (tobacco budworm), and Manduca sexta (tobacco hornworm). In artificial diet assays, the Vip3A concentration causing 50% mortality was H. zea > H. virescens > S. exigua > H. armigera > M. sexta > S. frugiperda > S. litura. In contrast, on vip3A transgenic tobacco the order of resistance (time until 50% lethality) was M. sexta > H. virescens > S. litura > H. zea > H. armigera > S. exigua > S. frugiperda. There was no significant correlation between the artificial diet and transgenic tobacco effects. Notably, the two insect species that are best-adapted for growth on tobacco, M. sexta and H. virescens, showed the greatest tolerance of vip3A-transgenic tobacco. This may indicate synergistic effects of Vip3A and endogenous plant defense mechanisms, e.g. nicotine, to which M. sexta and H. virescens would have greater resistance. Together, our results show that artificial diet assays are a poor predictor of Vip3A efficacy in transgenic plants, lepidopteran species vary in their sensitivity to Vip3A in diet-dependent manner, and that host plant adaptation of the targeted herbivores should be considered when designing transgenic plants for pest control.

2020 ◽  
Vol 113 (6) ◽  
pp. 2959-2971
Author(s):  
Muhammad Hassaan Khan ◽  
Georg Jander ◽  
Zahid Mukhtar ◽  
Muhammad Arshad ◽  
Muhammad Sarwar ◽  
...  

Abstract Agricultural pest infestation is as old as domestication of food crops and contributes a major share to the cost of crop production. In a transgenic pest control approach, plant production of Vip3A, an insecticidal protein from Bacillus thuringiensis, is effective against lepidopteran pests. A synthetic Vip3A gene was evaluated for efficacy against Spodoptera litura Fabricius (Lepidoptera: Noctuidae; cotton leafworm), Spodoptera exigua Hübner (Lepidoptera: Noctuidae; beet armyworm), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae; fall armyworm), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae; cotton bollworm), Helicoverpa zea Boddie (Lepidoptera: Noctuidae; corn earworm), Heliothis virescens Fabricius (Lepidoptera: Noctuidae; tobacco budworm), and Manduca sexta L. (Lepidoptera: Sphingidae; tobacco hornworm) in tobacco. In artificial diet assays, the concentration required to achieve 50% mortality was highest for H. zea followed by H. virescens > S. exigua > H. armigera > M. sexta > S. frugiperda > S. litura. By contrast, in bioassays with detached leaves from Vip3A transgenic tobacco, the time until 50% lethality was M. sexta > H. virescens > S. litura > H. zea > H. armigera > S. exigua. There was no significant correlation between the artificial diet and transgenic plant bioassay results. Notably, the two insect species that are best-adapted for growth on tobacco, M. sexta and H. virescens, showed the greatest time to 50% mortality on Vip3A-transgenic tobacco. Together, our results suggest that artificial diet assays may be a poor predictor of Vip3A efficacy in transgenic plants, lepidopteran species vary in their sensitivity to Vip3A in diet-dependent manner, and host plant adaptation of the targeted herbivores should be considered when designing transgenic plants for pest control.


1996 ◽  
Vol 31 (2) ◽  
pp. 209-217
Author(s):  
C. E. Rogers ◽  
O. G. Marti ◽  
L. D. Chandler ◽  
A. M. Simmons

The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a perennial immigrant pest of several crops in south Georgia. Moths of S. frugiperda commonly are infested by an ectoparasitic nematode, Noctuidonema guyanense Remillet and Silvain in the Southeast. The seasonal chronology and natural association of these species are reported for Tift Co. from 1988 to 1994. Seasonal influxes of non-infested moths usually arrive in late April and dissipate in early November. Seasonal influxes of infested male moths follow the initial immigrants by 4 to 6 wks and disappear in the fall from 1 to 2 mos earlier than the general moth populations. Feral male moths that are moderately worn and infested by N. guyanense weigh less than moderately worn, non-infested males. Noctuidonema guyanense infests moths of several species of noctuids, but it has not been found on the cotton bollworm/corn earworm [Helicoverpa zea (Boddie)], tobacco budworm [Heliothis virescens (Fab.)], or beet armyworm [S. exigua (Hubner)].


1996 ◽  
Vol 31 (3) ◽  
pp. 306-314
Author(s):  
Walter Solomon ◽  
Lavone Lambert ◽  
M. R. Bell

Bioassays were conducted to determine the susceptibility of five lepidopteran defoliators to a nuclear polyhedrosis virus (NPV) isolated from the celery looper, Anagrapha falcifera (Kirby). Tobacco budworm, Heliothis virescens (F.), exhibited the greatest susceptibility, LC50 = 2,328PIB/ml, and velvetbean caterpillar, Anticarsia gemmatalis (Hübner), exhibited the least susceptibility, LC50 = 5,176,038 PIB/ml, after 7 d of feeding at the 5 × 104 PIB/ml dosage. Corn earworm, Helicoverpa zea (Boddie), soybean looper, Pseudoplusia includens (Walker), and beet armyworm, Spodoptera exigua (Hübner), expressed intermediate levels of susceptibility, LC50 - 11,742, 14,195, 14,614 respectively, after 7 d of feeding at the 5 × 104 PIB/ml dosage. These results were consistent at days 10 and 14 indicating the relative activity of the virus against each species.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2021 ◽  
Vol 11 (8) ◽  
pp. 3542
Author(s):  
Ramida Krumsri ◽  
Kaori Ozaki ◽  
Toshiaki Teruya ◽  
Hisashi Kato-Noguchi

Phytotoxic substances released from plants are considered eco-friendly alternatives for controlling weeds in agricultural production. In this study, the leaves of Afzelia xylocarpa (Kurz) Craib. were investigated for biological activity, and their active substances were determined. Extracts of A. xylocarpa leaf exhibited concentration-dependent phytotoxic activity against the seedling length of Lepidium sativum L., Medicago sativa L., Phleum pratense L., and Echinochloa crus-galli (L.) P. Beauv. Bioassay-guided fractionation of the A. xylocarpa leaf extracts led to isolating and identifying two compounds: vanillic acid and trans-ferulic acid. Both compounds were applied to four model plants using different concentrations. The results showed both compounds significantly inhibited the model plants’ seedling length in a species-dependent manner (p < 0.05). The phytotoxic effects of trans-ferulic acid (IC50 = 0.42 to 2.43 mM) on the model plants were much greater than that of vanillic acid (IC50 = 0.73 to 3.17 mM) and P. pratense was the most sensitive to both compounds. In addition, the application of an equimolar (0.3 mM) mixture of vanillic acid and trans-ferulic acid showed the synergistic effects of the phytotoxic activity against the root length of P. pratense and L. sativum. These results suggest that the leaves of A. xylocarpa and its phytotoxic compounds could be used as a natural source of herbicides.


2021 ◽  
Vol 22 (4) ◽  
pp. 1596
Author(s):  
Elsa Ronzier ◽  
Claire Corratgé-Faillie ◽  
Frédéric Sanchez ◽  
Christian Brière ◽  
Tou Cheu Xiong

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


2004 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Magali Merkx-Jacques ◽  
Jacqueline C. Bede

Abstract Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.


2010 ◽  
Vol 100 (6) ◽  
pp. 573-581 ◽  
Author(s):  
Tingquan Wu ◽  
An Guo ◽  
Yanying Zhao ◽  
Xiaomeng Wang ◽  
Ying Wang ◽  
...  

Lumazine synthase (LS) catalyzes the penultimate reaction in the multistep riboflavin biosynthesis pathway, which is involved in plant defenses. Plant defenses are often subject to synergistic effects of jasmonic acid and ethylene whereas LS is a regulator of jasmonic acid signal transduction. However, little is known about whether the enzyme contributes to defense responses. To study the role of LS in plant pathogen defenses, we generated transgenic tobacco expressing the rice (Oryza sativa) LS gene, OsLS. OsLS was cloned and found to have strong identity with its homologues in higher plants and less homology to microbial orthologues. The OsLS protein localized to chloroplasts in three OsLS-expressing transgenic tobacco (LSETT) lines characterized as enhanced in growth and defense. Compared with control plants, LSETT had higher content of both riboflavin and the cofactors flavin mononucleotide and flavin adenine dinucleotide. In LSETT, jasmonic acid and ethylene were elevated, the expression of defense-related genes was induced, levels of resistance to pathogens were enhanced, and resistance was effective to viral, bacterial, and oomycete pathogens. Extents of OsLS expression correlated with increases in flavin, jasmonic acid, and ethylene content, and correlated with increases in resistance levels, suggesting a role for OsLS in defense responses.


Sign in / Sign up

Export Citation Format

Share Document