scholarly journals Antiretroviral APOBEC3 Cytidine Deaminases Alter HIV-1 Provirus Integration Site Profiles

2019 ◽  
Author(s):  
Hannah O. Ajoge ◽  
Tyler M. Renner ◽  
Kasandra Bélanger ◽  
Hinissan P. Kohio ◽  
Macon D. Coleman ◽  
...  

ABSTRACTAPOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. While the catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total restriction of infection, sublethal levels of deamination contribute to the genetic evolution of HIV-1. So far, little is known about how A3 might impact HIV-1 integrations into human chromosomal DNA. Using a deep sequencing approach, we analyzed the influence A3F and A3G on HIV-1 integration site selections. DNA editing was detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 enzymes decreased insertions into gene coding sequences and increased integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicate A3 as host factors that influence HIV-1 integration site selection and promote insertions into genomic sites that are transcriptionally less active.GRAPHICAL ABSTRACTSchematic depicting the influence of APOBEC3 (A3) proteins on HIV integration site targeting.Left, in the absence of A3, HIV has a strong preference for integrating into genes. Right, both catalytic active and non-catalytic A3 mutants decrease integration into genes and increase integration into SINE elements and in transcription-silencing non-B DNA features.


2020 ◽  
Author(s):  
Hinissan P. Kohio ◽  
Hannah O. Ajoge ◽  
Macon D. Coleman ◽  
Emmanuel Ndashimye ◽  
Richard M. Gibson ◽  
...  

ABSTRACTRetroviral integration site targeting is not random and plays a critical role in expression and long-term survival of the integrated provirus. To better understand the genomic environment surrounding retroviral integration sites, we performed an extensive comparative analysis of new and previously published integration site data from evolutionarily diverse retroviruses from seven genera, including different HIV-1 subtypes. We showed that evolutionarily divergent retroviruses exhibited distinct integration site profiles with strong preferences for non-canonical B-form DNA (non-B DNA). Whereas all lentiviruses and most retroviruses integrate within or near genes and non-B DNA, MMTV and ERV integration sites were highly enriched in heterochromatin and transcription-silencing non-B DNA features (e.g. G4, triplex and Z-DNA). Compared to in vitro-derived HIV-1 integration sites, in vivo-derived sites are significantly more enriched in transcriptionally silent regions of the genome and transcription-silencing non-B DNA features. Integration sites from individuals infected with HIV-1 subtype A, C or D viruses exhibited different preferences for non-B DNA and were more enriched in transcriptionally active regions of the genome compared to subtype B virus. In addition, we identified several integration site hotspots shared between different HIV-1 subtypes with specific non-B DNA sequence motifs present at these hotspots. Together, these data highlight important similarities and differences in retroviral integration site targeting and provides new insight into how retroviruses integrate into genomes for long-term survival.Graphical AbstractSchematic comparing integration site profiles from evolutionarily diverse retroviruses. Upper left, heatmaps showing the fold-enrichment (blue) and fold-depletion (red) of integration sites near non-B DNA features (lower left). Lower right, circa plot showing integration site hotspots shared between HIV-1 subtype A, B, C and D virus.



2020 ◽  
Author(s):  
Gregory J Bedwell ◽  
Alan N Engelman

Abstract The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.



2001 ◽  
Vol 183 (8) ◽  
pp. 2696-2699 ◽  
Author(s):  
Barbara Härtl ◽  
Wolfgang Wehrl ◽  
Thomas Wiegert ◽  
Georg Homuth ◽  
Wolfgang Schumann

ABSTRACT The Bacillus subtilis lacA gene, coding for β-galactosidase, has been explored as a new site able to accept DNA sequences from nonreplicating delivery vectors. Two such delivery expression vectors have been constructed and shown to be useful in obtaining regulated expression from the chromosomal location. In another experiment, it was shown that the integration of a regulatory gene at the lacA locus was able to control the expression of a transcriptional fusion at the amyElocus. These experiments demonstrate that both integration sites can be used simultaneously to obtain regulated expression of desired genes.



2015 ◽  
Vol 89 (19) ◽  
pp. 9702-9705 ◽  
Author(s):  
Richard W. Wong ◽  
João I. Mamede ◽  
Thomas J. Hope

It has been known for a number of years that integration sites of human immunodeficiency virus type 1 (HIV-1) DNA show a preference for actively expressed chromosomal locations. A number of viral and cellular proteins are implicated in this process, but the underlying mechanism is not clear. Two recent breakthrough publications advance our understanding of HIV integration site selection by focusing on the localization of the preferred target genes of integration. These studies reveal that knockdown of certain nucleoporins and components of nucleocytoplasmic trafficking alter integration site preference, not by altering the trafficking of the viral genome but by altering the chromatin subtype localization relative to the structure of the nucleus. Here, we describe the link between the nuclear basket nucleoporins (Tpr and Nup153) and chromatin organization and how altering the host environment by manipulating nuclear structure may have important implications for the preferential integration of HIV into actively transcribed genes, facilitating efficient viral replication.



2021 ◽  
Author(s):  
Shelby Winans ◽  
Stephen P. Goff

AbstractRetroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into the host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a dramatic redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit more than a 25-fold increase in integrations into centromeric alpha satellite repeat sequences, as assessed by both deep sequencing and qPCR assays. Immunoprecipitation studies identified host factors that uniquely bind to the mutant IN protein and thus may account for the novel bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in patients who control viral replication without intervention (so-called elite controllers). The K258R point mutation in HIV-1 IN reported in this study has also been found in databases of latent proviruses found in patients. The altered integration site preference induced by this mutation has uncovered a hidden feature of the establishment of viral latency and control of viral replication.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2518-2518
Author(s):  
Kevin G Haworth ◽  
Lauren E Schefter ◽  
Zachary K. Norgaard ◽  
Jennifer E Adair ◽  
Hans-Peter Kiem

Abstract BACKGROUND A key event in the lifecycle of Human Immunodeficiency Virus (HIV) is permanent integration into the infected cells genome. In addition to allowing long-term persistence of the virus, this results in a trackable mark carried in all infected cells. Active HIV replication represses cellular pathways, preventing further cell division. This would imply that any specific integration site (IS) which is clonally expanded either during active or repressed viral infection arises from either a dormant/inactive virus, or is perturbing local gene expression, leading to increased cell proliferation. Alternatively, a cell carrying HIV provirus could proliferate due to T-cell specific antigen stimulation. By analyzing the patterns of integration sites detected in cell cultures and tissue samples from animal models of HIV infection, we can better understand the basic virology of integration site selection and determine what may potentially drive infected cells to persist despite effective treatment regimens. METHODS Jurkat reporter cell lines or primary human CD4+ cells were cultured and infected with various strains of HIV including both CCR5 and CXCR4 tropic viruses. Infected cells were cultured up to 21 days post infection, then analyzed for HIV proviral integration sites by next-generation sequencing. For in vivo studies, NSG mice were infused with human CD34+ hematopoietic stem/progenitor cells, resulting in a reconstituted human immune system including high levels of CD4+ T cells capable of sustaining HIV infection. After 16 weeks post-challenge, tissues were collected and subjected to integration site analysis for HIV proviral DNA. Identified integration sites were mapped and compared across multiple parameters to identify chromosomal regions and associated genes enriched for integration events, as well as clonally expanded cells in vivo. RESULTS Genome-wide analysis of HIV integration sites reveals a remarkably similar chromosomal landscape both in tissue culture infection of Jurkat cells and in vivo infection data (Figure 1), as well as across multiple HIV strains. As previously observed, the majority of integrations occur near or within gene coding regions thought to be actively transcribed at time of infection. However, certain areas of the genome, and even unique genes, are enriched for IS in individual samples. In addition to these genomic regions of enrichment, we also observe specific clonal outgrowth of unique integration events in genes previously unidentified in the literature. Three genes in particular exhibit a significant increase of integration events during acute infection which are 3x higher than predicted by random chance alone. We also observe integration events in genes that have been documented by other labs in HIV+ clinical patient samples, however in our active infection models, we do not see those specific genes enriched or expanded. This could indicate that these genes play a role in persistence that is only present during anti-retroviral therapy which suppresses active replication. CONCLUSIONS We have cataloged the most extensive HIV IS library to date in both relevant tissue culture models and in vivo infection studies, including over 245,000 unique integration events and three different HIV strains commonly used in research. Genome-wide correlation studies reveal regions significantly enriched for HIV integrations and genes which repeatedly exhibit clonal outgrowth in multiple animals. These types of studies are now being applied to human patient samples to determine if latency and persistence of infection can be mapped to unique integration events or genes of interest. Such information may indicate when and how the latent HIV reservoir is seeded and what types of therapy or treatments are most effective at targeting and eliminating these populations. Circos plot comparing HIV integrations sites (IS) identified either during in vitro cell culture infections (black bars), or in vivo infection studies using humanized mice (red bars). The outer ring is composed of human chromosomes each of which are divided into 25kB fragment bins. Total number of unique integration sites identified in each bin is represented by the height of the histogram bars. The in vitro IS concentric ring scale represents increments of 25 outwards up to 250 while the in vivo IS scales inwards in increments of 2 up to 16. Figure 1 Comparison of in vitro vs in vivo HIV Integration Sites. Figure 1. Comparison of in vitro vs in vivo HIV Integration Sites. Disclosures Adair: Rocket Pharmaceuticals: Consultancy, Equity Ownership.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashwanth C. Francis ◽  
Mariana Marin ◽  
Parmit K. Singh ◽  
Vasudevan Achuthan ◽  
Mathew J. Prellberg ◽  
...  

AbstractThe early steps of HIV-1 infection, such as uncoating, reverse transcription, nuclear import, and transport to integration sites are incompletely understood. Here, we imaged nuclear entry and transport of HIV-1 replication complexes in cell lines, primary monocyte-derived macrophages (MDMs) and CD4+ T cells. We show that viral replication complexes traffic to and accumulate within nuclear speckles and that these steps precede the completion of viral DNA synthesis. HIV-1 transport to nuclear speckles is dependent on the interaction of the capsid proteins with host cleavage and polyadenylation specificity factor 6 (CPSF6), which is also required to stabilize the association of the viral replication complexes with nuclear speckles. Importantly, integration site analyses reveal a strong preference for HIV-1 to integrate into speckle-associated genomic domains. Collectively, our results demonstrate that nuclear speckles provide an architectural basis for nuclear homing of HIV-1 replication complexes and subsequent integration into associated genomic loci.



2020 ◽  
Vol 48 (14) ◽  
pp. 7801-7817 ◽  
Author(s):  
Gerlinde Vansant ◽  
Heng-Chang Chen ◽  
Eduard Zorita ◽  
Katerina Trejbalová ◽  
Dalibor Miklík ◽  
...  

Abstract HIV-1 persists lifelong in memory cells of the immune system as latent provirus that rebounds upon treatment interruption. Therefore, the latent reservoir is the main target for an HIV cure. Here, we studied the direct link between integration site and transcription using LEDGINs and Barcoded HIV-ensembles (B-HIVE). LEDGINs are antivirals that inhibit the interaction between HIV-1 integrase and the chromatin-tethering factor LEDGF/p75. They were used as a tool to retarget integration, while the effect on HIV expression was measured with B-HIVE. B-HIVE tracks insert-specific HIV expression by tagging a unique barcode in the HIV genome. We confirmed that LEDGINs retarget integration out of gene-dense and actively transcribed regions. The distance to H3K36me3, the marker recognized by LEDGF/p75, clearly increased. LEDGIN treatment reduced viral RNA expression and increased the proportion of silent provirus. Finally, silent proviruses obtained after LEDGIN treatment were located further away from epigenetic marks associated with active transcription. Interestingly, proximity to enhancers stimulated transcription irrespective of LEDGIN treatment, while the distance to H3K36me3 only changed after treatment with LEDGINs. The fact that proximity to these markers are associated with RNA expression support the direct link between provirus integration site and viral expression.



2006 ◽  
Vol 80 (22) ◽  
pp. 11313-11321 ◽  
Author(s):  
Sanggu Kim ◽  
Yein Kim ◽  
Teresa Liang ◽  
Janet S. Sinsheimer ◽  
Samson A. Chow

ABSTRACT Integration of retroviral DNA is nonspecific and can occur at many sites throughout chromosomes. However, the process is not uniformly distributed, and both hot and cold spots for integration exist. The mechanism that determines target site specificity is not well understood. Because of the nonspecific and widespread nature of integration, studies analyzing the mechanism and factors that control target site selection require the collection and analysis of a large library of human immunodeficiency virus type 1 (HIV-1) proviral clones. Such analyses are time-consuming and labor-intensive using conventional means. We have developed an efficient and high-throughput method of sequencing and mapping a large number of independent integration sites in the absence of any selection or bias. The new assay involves the use of a modified HIV-1 (NL-Mme) containing a type IIS restriction site, MmeI, at the right end of viral DNA. Digestion of genomic DNA from NL-Mme-infected cells generated viral DNA-containing fragments of a discrete size. Subsequent ligation-mediated PCR yielded short integration site fragments termed Int-tags, which were concatemerized for determining multiple integration sites in a single sequencing reaction. Analysis of chromosomal features and sequence preference associated with integration events confirmed the validity of the new high-throughput assay. The assay will aid the effort in understanding the mechanisms of target site selection during HIV-1 DNA integration, and the described methodology can be adapted easily to integration site studies involving other retroviruses and transposons.



Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2242
Author(s):  
Qi Shen ◽  
Chunxiang Wu ◽  
Christian Freniere ◽  
Therese N. Tripler ◽  
Yong Xiong

The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial–temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.



Sign in / Sign up

Export Citation Format

Share Document