scholarly journals Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells

2020 ◽  
Vol 21 (19) ◽  
pp. 7192
Author(s):  
Paweł Leszczyński ◽  
Magdalena Śmiech ◽  
Aamir Salam Teeli ◽  
Effi Haque ◽  
Robert Viger ◽  
...  

PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.

2014 ◽  
Vol 306 (8) ◽  
pp. F916-F925 ◽  
Author(s):  
Jigang Chen ◽  
Yanhong Guo ◽  
Wei Zeng ◽  
Li Huang ◽  
Qi Pang ◽  
...  

Epigenetics plays a key role in the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Here, we examined the role of endoplasmic reticulum (ER) stress in histone H3 lysine 4 (H3K4) methyltransferase SET7/9-induced monocyte chemoattractant protein-1 (MCP-1) expression in the kidneys of db/db mice. Our results indicate that the expression of MCP-1 significantly increased in the kidneys of db/db mice in a time-dependent manner. An increased chromatin mark associated with an active gene (H3K4me1) at MCP-1 promoters accompanied this change in expression. The expression of SET7/9 and the recruitment to these promoters were also elevated. SET7/9 gene silencing with small interfering (si) RNAs significantly attenuated the expression of H3K4me1 and MCP-1. Furthermore, expression of signaling regulator glucose-regulated protein 78 (GRP78), a monitor of ER stress, significantly increased in the kidneys of db/db mice. The expression of spliced X-box binding protein 1 (XBP1s), an ER stress-inducible transcription factor, and recruitment to the SET7/9 promoters were also increased. XBP1s gene silencing with siRNAs significantly attenuated the expression of SET7/9, H3K4me1, and MCP-1. The chaperone betaine not only effectively downregulated the GRP78 and XBP1s expression levels but also markedly decreased the SET7/9, H3K4me1, and MCP-1 levels. Luciferase reporter assay demonstrated that XBP1s participated in ER stress-induced SET7/9 transcription, Taken together, these results reveal that ER stress can trigger the expression of MCP-1, in part through the XBP1s-mediated induction of SET7/9.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 43-43
Author(s):  
Pavithra Shyamsunder ◽  
Shree Pooja Sridharan ◽  
Pushkar Dakle ◽  
Zeya Cao ◽  
Vikas Madan ◽  
...  

Acute promyelocytic leukemia (APL) is a unique subtype of acute myeloid leukemia (AML). The disease is identified by distinctive morphology and is distinguished by a balanced reciprocal translocation between chromosomes 15 and 17. This aberration leads to the fusion between promyelocytic leukemia (PML) gene located on chromosome 15q21, and retinoic acid receptor α (RARA) gene from chromosome 17q21, leading to the resultant chimeric onco-fusion protein PML-RARA, which is detectable in more than 95% patients and disturbs proper promyelocytic differentiation. All-trans retinoic acid (ATRA) can induce granulocytic differentiation in APL and is used to treat APL patients. Genes containing PML-RARA-targeted promoters are transcriptionally suppressed in APL and most likely constitute a major mechanism of transcriptional repression occurring in APL. A growing body of evidence points to the role of distal regulatory elements, including enhancers, in the control of gene expression. In order to understand the unique sets of enhancers that might be under the control of PML-RAR and crucial for granulocytic differentiation of NB4 cells, we analysed the enhancer landscape of control and ATRA treated NB4 cells. H3K9Ac mapping identified a repertoire of enhancers that were gained in NB4 cells treated with ATRA. Closer investigation of these enhancer elements revealed enrichment of H3K9Ac signals around major drivers of myeloid differentiation. Of note, we identified a gain in enhancer signature for a region about 7kb downstream of the CEBPE gene. Our previous studies identified a novel enhancer for CEBPE in murine hematopoietic cells, which was 6 downstream of CEBPE core promoter. It appears that the +7kb region we identified in human APL cells may be analogous to the murine enhancer. We also observed that PML-RAR binds this +7kb region and ATRA treatment of NB4 cells displaced binding of PML-RAR from the + 7kb region, suggestive of a transcriptional repressive effect of PML-RAR at such enhancer elements. To test the transcription regulating potential of this +7kb region, we used catalytically inactive Cas9 fused to Krüppel associated box (KRAB) domain (dCas9-KRAB). We designed three guide RNAs covering this regulatory region. The sgRNAs effectively repressed expression of CEBPE accompanied by lowered granulocytic differentiation of these guide RNA targeted NB4 cells after ATRA treatment. To explore transcription factor (TF) occupancy at this +7 kb region, we analysed public available ChIP-seq datasets for hematopoiesis-specific factors. Analysis revealed that the +7kb region was marked by an open chromatin signature, accompanied by binding of a majority of hematopoietic TFs around this putative regulatory element with concurrent binding of EP300. Strikingly we noticed binding of CEBPA, CEBPB and CEBPE at this regulatory element. To assess whether binding of these members of the CEBP family of TFs is functionally relevant, luciferase reporter and electrophoretic mobility shift assays (EMSA) were performed. Co expression of the CEBP TFs led to significant induction of luciferase expression, and this data was further confirmed using EMSA assays. Based on these observations, we propose that PML-RAR blocks granulocytic differentiation by occupying this +7kb enhancer of CEBPE, hinders binding of other cell type/lineage specific TFs, and blocks CEBPE expression. When cells are stimulated with ATRA, PML-RAR is displaced from the CEBPE enhancer, allowing for efficient binding of myeloid-specific TFs. This results in increased CEBPE expression, which in turn promotes efficient granulocytic differentiation. The findings from our study expands our current understanding of the mechanism of differentiation therapy, the role of onco-fusion proteins in inhibiting myeloid differentiation, and may provide new therapeutic approaches to many acute myeloid leukemias. Disclosures Ong: National University of Singapore: Other: Royalties.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 75-87 ◽  
Author(s):  
J.E. Johnson ◽  
K. Zimmerman ◽  
T. Saito ◽  
D.J. Anderson

MASH1 and MASH2, mammalian homologues of the Drosophila neural determination genes achaete-scute, are members of the basic helix-loop-helix (bHLH) family of transcription factors. We show here that murine P19 embryonal carcinoma cells can be used as a model system to study the regulation and function of these genes. MASH1 and MASH2 display complementary patterns of expression during the retinoic-acid-induced neuronal differentiation of P19 cells. MASH1 mRNA is undetectable in undifferentiated P19 cells but is induced to high levels by retinoic acid coincident with neuronal differentiation. In contrast, MASH2 mRNA is expressed in undifferentiated P19 cells and is repressed by retinoic acid treatment. These complementary expression patterns suggest distinct functions for MASH1 and MASH2 in development, despite their sequence homology. In retinoic-acid-treated P19 cells, MASH1 protein expression precedes and then overlaps expression of neuronal markers. However, MASH1 is expressed by a smaller proportion of cells than expresses such markers. MASH1 immunoreactivity is not detected in differentiated cells displaying a neuronal morphology, suggesting that its expression is transient. These features of MASH1 expression are similar to those observed in vivo, and suggest that P19 cells represent a good model system in which to study the regulation of this gene. Forced expression of MASH1 was achieved in undifferentiated P19 cells by transfection of a cDNA expression construct. The transfected cells expressing exogenous MASH1 protein contained E-box-binding activity that could be super-shifted by an anti-MASH1 antibody, but exhibited no detectable phenotypic changes. Thus, unlike myogenic bHLH genes, such as MyoD, which are sufficient to induce muscle differentiation, expression of MASH1 appears insufficient to promote neurogenesis.


2016 ◽  
Author(s):  
Jiwoo Lee ◽  
Han Suk Ryu ◽  
Bok Sil Hong ◽  
Han-Byoel Lee ◽  
Minju Lee ◽  
...  

ABSTRACTSIntroductionThe role of adipocytes in cancer microenvironment has gained focus during the recent years. However, the characteristics of the cancer-associated adipocytes (CAA) in human breast cancer tissues and the underlying regulatory mechanism are not clearly understood.MethodWe reviewed pathology specimens of breast cancer patients to understand the morphologic characteristics of CAA, and profiled the mRNA and miRNA expression of CAA by using indirect co-culture system in vitro.ResultsThe CAAs in human breast cancers showed heterogeneous topographic relationship with breast cancer cells within the breast microenvironment. The CAAs exhibited the characteristics of de-differentiation determined by their microscopic appearance and the expression levels of adipogenic markers. Additionally, the 3T3-L1 adipocytes co-cultured with breast cancer cells showed up-regulation of inflammation-related genes including Il6 and Ptx3. The up-regulation of IL6 in CAA was further observed in human breast cancer tissues. miRNA array of co-cultured 3T3-L1 cells showed increased expression of mmu-miR-5112 which may target Cpeb1. Cpeb1 is a negative regulator of Il6. The suppressive role of mmu-miR-5112 was confirmed by dual luciferase reporter assay, and mmu-miR-5112-treated adipocytes showed up-regulation of Il6. The transition of adipocytes into more inflammatory CAA resulted in proliferation-promoting effect in ER positive breast cancer cells such as MCF7 and ZR-75-1 but not in ER negative cells.ConclusionIn this study, we have determined the de-differentiated and inflammatory natures of CAA in breast cancer microenvironment. Additionally, we propose a miRNA-based regulatory mechanism underlying the process of acquiring inflammatory phenotypes in CAA.


2004 ◽  
Vol 24 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Soyeon Kim ◽  
Yong-Soo Yoon ◽  
Ji-Won Kim ◽  
Miyoung Jung ◽  
Seung-Up Kim ◽  
...  

2004 ◽  
Vol 279 (23) ◽  
pp. 24414-24419 ◽  
Author(s):  
Jun Song ◽  
Ying-Chun Lu ◽  
Kazunari Yokoyama ◽  
John Rossi ◽  
Robert Chiu

2012 ◽  
Vol 151 (6) ◽  
pp. 611-620 ◽  
Author(s):  
Kouji Tanaka ◽  
Keiko Tamiya-Koizumi ◽  
Kazumi Hagiwara ◽  
Hiromi Ito ◽  
Akira Takagi ◽  
...  

2020 ◽  
Author(s):  
Yu’e Han ◽  
Xing Liu ◽  
Guangling Li ◽  
Xia Ju ◽  
Zhongyi Song

Abstract Background Previous studies have shown that many long noncoding RNAs (lncRNAs) are involved in the pathogenesis of nasopharyngeal carcinoma (NPC). However, the regulatory mechanism of lncRNA SNHG6 remains unknown. Therefore, this study was design to preliminarily elucidate the role of SNHG6 in NPC. Methods The mRNA expression was detected by RT-qPCR. CCK-8, Transwell and dual luciferase reporter assays were used to investigate the function of SNHG6 in NPC. Results Upregulation of SNHG6 and downregulation of miR-944 were identified in NPC and were associated with TNM stage and distant metastasis in NPC patients. Additionally, SNHG6 acts as a molecular sponge of miR-944. More importantly, SNHG6 promoted NPC cell proliferation, migration and invasion by downregulating miR-944. Further, RGS17 was confirmed to be a direct target of miR-944. MiR-944 restrained NPC progression by targeting RGS17. Besides that, knockdown of RGS17 was found to block NPC progression. Upregulation of SNHG6 weakened the suppressive effect of RGS17 knockdown in NPC. Conclusion LncRNA SNHG6 promotes tumorigenesis of NPC by competitively binding to miR-944 with RGS17.


Sign in / Sign up

Export Citation Format

Share Document