Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences

2021 ◽  
Author(s):  
Terence Gall-Duncan ◽  
Nozomu Sato ◽  
Ryan K.C. Yuen ◽  
Christopher E. Pearson

Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be “insertions” within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts—a vista that is about to expand.

2018 ◽  
Author(s):  
Satomi Mitsuhashi ◽  
Martin C Frith ◽  
Takeshi Mizuguchi ◽  
Satoko Miyatake ◽  
Tomoko Toyota ◽  
...  

AbstractTandemly repeated sequences are highly mutable and variable features of genomes. Tandem repeat expansions are responsible for a growing list of human diseases, even though it is hard to determine tandem repeat sequences with current DNA sequencing technology. Recent long-read technologies are promising, because the DNA reads are often longer than the repetitive regions, but are hampered by high error rates. Here, we report robust detection of human repeat expansions from careful alignments of long (PacBio and nanopore) reads to a reference genome. Our method (tandem-genotypes) is robust to systematic sequencing errors, inexact repeats with fuzzy boundaries, and low sequencing coverage. By comparing to healthy controls, we can prioritize pathological expansions within the top 10 out of 700000 tandem repeats in the genome. This may help to elucidate the many genetic diseases whose causes remain unknown.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mathys Grapotte ◽  
Manu Saraswat ◽  
Chloé Bessière ◽  
Christophe Menichelli ◽  
Jordan A. Ramilowski ◽  
...  

AbstractUsing the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1313-1320 ◽  
Author(s):  
John S Taylor ◽  
Felix Breden

Abstract The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the “raw material” for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the “imperfect” or “short direct” repeats frequently observed adjacent to both mtDNA and nuclear VNTRs.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 500
Author(s):  
Juan A. Subirana ◽  
Xavier Messeguer

Repetitive genome regions have been difficult to sequence, mainly because of the comparatively small size of the fragments used in assembly. Satellites or tandem repeats are very abundant in nematodes and offer an excellent playground to evaluate different assembly methods. Here, we compare the structure of satellites found in three different assemblies of the Caenorhabditis elegans genome: the original sequence obtained by Sanger sequencing, an assembly based on PacBio technology, and an assembly using Nanopore sequencing reads. In general, satellites were found in equivalent genomic regions, but the new long-read methods (PacBio and Nanopore) tended to result in longer assembled satellites. Important differences exist between the assemblies resulting from the two long-read technologies, such as the sizes of long satellites. Our results also suggest that the lengths of some annotated genes with internal repeats which were assembled using Sanger sequencing are likely to be incorrect.


2021 ◽  
Author(s):  
Igor Stevanovski ◽  
Sanjog R. Chintalaphani ◽  
Hasindu Gamaarachchi ◽  
James M. Ferguson ◽  
Sandy S. Pineda ◽  
...  

ABSTRACTShort-tandem repeat (STR) expansions are an important class of pathogenic genetic variants. Over forty neurological and neuromuscular diseases are caused by STR expansions, with 37 different genes implicated to date. Here we describe the use of programmable targeted long-read sequencing with Oxford Nanopore’s ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single, simple assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of expanded and non-expanded STR sites. In doing so, the assay correctly diagnoses all individuals in a cohort of patients (n = 27) with various neurogenetic diseases, including Huntington’s disease, fragile X syndrome and cerebellar ataxia (CANVAS) and others. Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing, and identifies non-canonical STR motif conformations and internal sequence interruptions. Even in our relatively small cohort, we observe a wide diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of STR expansion disorders. Finally, we show how the flexible inclusion of pharmacogenomics (PGx) genes as secondary ReadUntil targets can identify clinically actionable PGx genotypes to further inform patient care, at no extra cost. Our study addresses the need for improved techniques for genetic diagnosis of STR expansion disorders and illustrates the broad utility of programmable long-read sequencing for clinical genomics.One sentence summaryThis study describes the development and validation of a programmable targeted nanopore sequencing assay for parallel genetic diagnosis of all known pathogenic short-tandem repeats (STRs) in a single, simple test.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i75-i83 ◽  
Author(s):  
Alla Mikheenko ◽  
Andrey V Bzikadze ◽  
Alexey Gurevich ◽  
Karen H Miga ◽  
Pavel A Pevzner

Abstract Motivation Extra-long tandem repeats (ETRs) are widespread in eukaryotic genomes and play an important role in fundamental cellular processes, such as chromosome segregation. Although emerging long-read technologies have enabled ETR assemblies, the accuracy of such assemblies is difficult to evaluate since there are no tools for their quality assessment. Moreover, since the mapping of error-prone reads to ETRs remains an open problem, it is not clear how to polish draft ETR assemblies. Results To address these problems, we developed the TandemTools software that includes the TandemMapper tool for mapping reads to ETRs and the TandemQUAST tool for polishing ETR assemblies and their quality assessment. We demonstrate that TandemTools not only reveals errors in ETR assemblies but also improves the recently generated assemblies of human centromeres. Availability and implementation https://github.com/ablab/TandemTools. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Arne De Roeck ◽  
Wouter De Coster ◽  
Liene Bossaerts ◽  
Rita Cacace ◽  
Tim De Pooter ◽  
...  

AbstractTechnological limitations have hindered the large-scale genetic investigation of tandem repeats in disease. We show that long-read sequencing with a single Oxford Nanopore Technologies PromethION flow cell per individual achieves 30× human genome coverage and enables accurate assessment of tandem repeats including the 10,000-bp Alzheimer’s disease-associated ABCA7 VNTR. The Guppy “flip-flop” base caller and tandem-genotypes tandem repeat caller are efficient for large-scale tandem repeat assessment, but base calling and alignment challenges persist. We present NanoSatellite, which analyzes tandem repeats directly on electric current data and improves calling of GC-rich tandem repeats, expanded alleles, and motif interruptions.


2019 ◽  
Vol 116 (46) ◽  
pp. 23243-23253 ◽  
Author(s):  
Arvis Sulovari ◽  
Ruiyang Li ◽  
Peter A. Audano ◽  
David Porubsky ◽  
Mitchell R. Vollger ◽  
...  

Short tandem repeats (STRs) and variable number tandem repeats (VNTRs) are important sources of natural and disease-causing variation, yet they have been problematic to resolve in reference genomes and genotype with short-read technology. We created a framework to model the evolution and instability of STRs and VNTRs in apes. We phased and assembled 3 ape genomes (chimpanzee, gorilla, and orangutan) using long-read and 10x Genomics linked-read sequence data for 21,442 human tandem repeats discovered in 6 haplotype-resolved assemblies of Yoruban, Chinese, and Puerto Rican origin. We define a set of 1,584 STRs/VNTRs expanded specifically in humans, including large tandem repeats affecting coding and noncoding portions of genes (e.g., MUC3A, CACNA1C). We show that short interspersed nuclear element–VNTR–Alu (SVA) retrotransposition is the main mechanism for distributing GC-rich human-specific tandem repeat expansions throughout the genome but with a bias against genes. In contrast, we observe that VNTRs not originating from retrotransposons have a propensity to cluster near genes, especially in the subtelomere. Using tissue-specific expression from human and chimpanzee brains, we identify genes where transcript isoform usage differs significantly, likely caused by cryptic splicing variation within VNTRs. Using single-cell expression from cerebral organoids, we observe a strong effect for genes associated with transcription profiles analogous to intermediate progenitor cells. Finally, we compare the sequence composition of some of the largest human-specific repeat expansions and identify 52 STRs/VNTRs with at least 40 uninterrupted pure tracts as candidates for genetically unstable regions associated with disease.


2010 ◽  
Vol 58 (3) ◽  
pp. 297-308 ◽  
Author(s):  
Bozidar Savic ◽  
Vojin Ivetic ◽  
Vesna Milicevic ◽  
Ivan Pavlovic ◽  
Milenko Zutic ◽  
...  

Mycoplasma hyopneumoniaeis a primary agent associated with mycoplasma pneumonia and the porcine respiratory disease complex (PRDC). Various reports have indicated that different strains ofM. hyopneumoniaeare circulating in the swine population. Lysates from lung swabs from naturally infected pigs of different ages were tested according to a new variable number of tandem repeats (VNTR) genetic typing method based on the polyserine repeat motif of the P146 lipoproteoadhesin, which can be applied directly on clinical material without isolation ofM. hyopneumoniae. The aim was to determine the diversity ofM. hyopneumoniaeisolates from conventional farrow-to-finish pig farms located in different geographical areas of Serbia. PCR amplification was carried out usingM. hyopneumoniae-specific designed, conserved primers (p146MH — L and p146MH — R) flanking the region encoding the repeat motif, followed by sequencing and cluster analysis. Five groups ofM. hyopneumoniaewith thirteen to twenty-four serine repeats were observed. Analysis of three samples from each farm indicated that the specific isolate is ubiquitous in pigs of different ages. Furthermore, seven clusters were observed within 27 tested samples. The results indicated a considerable diversity amongM. hyopneumoniaefield isolates in the swine population from conventional farrow-to-finish farms in Serbia and suggest close genetic relatedness of the corresponding isolates.


1995 ◽  
Vol 15 (11) ◽  
pp. 6256-6261 ◽  
Author(s):  
S Gargano ◽  
P Wang ◽  
E Rusanganwa ◽  
S Bacchetti

Adenovirus type 12 induces four fragile sites upon infection of human cells. The U2 locus, consisting of up to 20 tandem repeats of a 5.8-kbp monomer, maps at the most sensitive of these sites at 17q21-22. We have previously shown that an artificial U2 locus integrated into the human genome generates a new virus-induced fragile site. To determine which elements within the U2 monomer are responsible for fragility, we constructed loci consisting of tandem repeats of subfragments of the U2 monomer. With this approach, we demonstrate that a transcriptionally competent U2 gene is necessary and sufficient for virus-induced fragility and that no other element within the 5.8-kbp monomer contributes to this effect.


Sign in / Sign up

Export Citation Format

Share Document