scholarly journals Novel de novo variant in EBF3 is likely to impact DNA binding in a patient with a neurodevelopmental disorder and expanded phenotypes: patient report, in silico functional assessment, and review of published cases

2017 ◽  
Vol 3 (3) ◽  
pp. a001743 ◽  
Author(s):  
Patrick R. Blackburn ◽  
Sarah S. Barnett ◽  
Michael T. Zimmermann ◽  
Margot A. Cousin ◽  
Charu Kaiwar ◽  
...  
Seizure ◽  
2021 ◽  
Vol 84 ◽  
pp. 47-52
Author(s):  
Xiao-hang Qian ◽  
Xiao-ying Liu ◽  
Ze-yu Zhu ◽  
Shi-ge Wang ◽  
Xiao-xuan Song ◽  
...  

2022 ◽  
Author(s):  
Tinna Reynisdottir ◽  
Kimberley Anderson ◽  
Leandros Boukas ◽  
Hans Bjornsson

Wiedemann-Steiner syndrome (WSS) is a neurodevelopmental disorder caused by de novo variants in KMT2A, which encodes a multi–domain histone methyltransferase. To gain insight into the currently unknown pathogenesis of WSS, we examined the spatial distribution of likely WSS–causing variants across the 15 different domains of KMT2A. Compared to variants in healthy controls, WSS variants exhibit a 64.1–fold overrepresentation within the CXXC domain – which mediates binding to unmethylated CpGs – suggesting a major role for this domain in mediating the phenotype. In contrast, we find no significant overrepresentation within the catalytic SET domain. Corroborating these results, we find that hippocampal neurons from Kmt2a–deficient mice demonstrate disrupted H3K4me1 preferentially at CpG-rich regions, but this has no systematic impact on gene expression. Motivated by these results, we combine accurate prediction of the CXXC domain structure by AlphaFold2 with prior biological knowledge to develop a classification scheme for missense variants in the CXXC domain. Our classifier achieved 96.0% positive and 92.3% negative predictive value on a hold–out test set. This classification performance enabled us to subsequently perform an in silico saturation mutagenesis and classify a total of 445 variants according to their functional effects. Our results yield a novel insight into the mechanistic basis of WSS and provide an example of how AlphaFold2 can contribute to the in silico characterization of variant effects with very high accuracy, establishing a paradigm potentially applicable to many other Mendelian disorders.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1909
Author(s):  
Elisabetta Tabolacci ◽  
Maria Grazia Pomponi ◽  
Laura Remondini ◽  
Roberta Pietrobono ◽  
Daniela Orteschi ◽  
...  

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism caused by the instability of a CGG trinucleotide repeat in exon 1 of the FMR1 gene. The co-occurrence of FXS with other genetic disorders has only been occasionally reported. Here, we describe three independent cases of FXS co-segregation with three different genetic conditions, consisting of Duchenne muscular dystrophy (DMD), PPP2R5D--related neurodevelopmental disorder, and 2p25.3 deletion. The co-occurrence of DMD and FXS has been reported only once in a young boy, while in an independent family two affected boys were described, the elder diagnosed with FXS and the younger with DMD. This represents the second case in which both conditions coexist in a 5-year-old boy, inherited from his heterozygous mother. The next double diagnosis had never been reported before: through exome sequencing, a girl with FXS who was of 7 years of age with macrocephaly and severe psychomotor delay was found to carry a de novo variant in the PPP2R5D gene. Finally, a maternally inherited 2p25.3 deletion associated with a decreased level of the MYT1L transcript, only in the patient, was observed in a 33-year-old FXS male with severe seizures compared to his mother and two sex- and age-matched controls. All of these patients represent very rare instances of genetic conditions with clinical features that can be modified by FXS and vice versa.


Author(s):  
Dieter Buyst ◽  
V. Gheerardijn ◽  
J. Van Den Begin ◽  
A. Madder ◽  
J. C. Martins

2021 ◽  
Vol 132 ◽  
pp. S282
Author(s):  
Florencia del Viso ◽  
Lisa Lansdon ◽  
Emily Fleming ◽  
Bonnie Sullivan ◽  
Carol Saunders

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kohei Kitagawa ◽  
Kensuke Matsumura ◽  
Masayuki Baba ◽  
Momoka Kondo ◽  
Tomoya Takemoto ◽  
...  

AbstractAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristina Rodriguez-Fontenla ◽  
Angel Carracedo

AbstractAutism spectrum disorders (ASD) is a complex neurodevelopmental disorder that may significantly impact on the affected individual’s life. Common variation (SNPs) could explain about 50% of ASD heritability. Despite this fact and the large size of the last GWAS meta-analysis, it is believed that hundreds of risk genes in ASD have yet to be discovered. New tools, such as TWAS (Transcriptome Wide Association Studies) which integrate tissue expression and genetic data, are a great approach to identify new ASD susceptibility genes. The main goal of this study is to use UTMOST with the publicly available summary statistics from the largest ASD GWAS meta-analysis as genetic input. In addition, an in silico biological characterization for the novel associated loci was performed. Our results have shown the association of 4 genes at the brain level (CIPC, PINX1, NKX2-2, and PTPRE) and have highlighted the association of NKX2-2, MANBA, ERI1, and MITF at the gastrointestinal level. The gastrointestinal associations are quite relevant given the well-established but unexplored relationship between ASD and gastrointestinal symptoms. Cross-tissue analysis has shown the association of NKX2-2 and BLK. UTMOST-associated genes together with their in silico biological characterization seems to point to different biological mechanisms underlying ASD etiology. Thus, it would not be restricted to brain tissue and it will involve the participation of other body tissues such as the gastrointestinal.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ilaria Mannucci ◽  
Nghi D. P. Dang ◽  
Hannes Huber ◽  
Jaclyn B. Murry ◽  
Jeff Abramson ◽  
...  

Abstract Background We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. Methods Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. Results We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. Conclusions Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3735-3741 ◽  
Author(s):  
Catherine Roche-Lestienne ◽  
Lauréline Deluche ◽  
Sélim Corm ◽  
Isabelle Tigaud ◽  
Sami Joha ◽  
...  

Abstract Acquired molecular abnormalities (mutations or chromosomal translocations) of the RUNX1 transcription factor gene are frequent in acute myeloblastic leukemias (AMLs) and in therapy-related myelodysplastic syndromes, but rarely in acute lymphoblastic leukemias (ALLs) and chronic myelogenous leukemias (CMLs). Among 18 BCR-ABL+ leukemias presenting acquired trisomy of chromosome 21, we report a high frequency (33%) of recurrent point mutations (4 in myeloid blast crisis [BC] CML and one in chronic phase CML) within the DNA-binding region of RUNX1. We did not found any mutation in de novo BCR-ABL+ ALLs or lymphoid BC CML. Emergence of the RUNX1 mutations was detected at diagnosis or before the acquisition of trisomy 21 during disease progression. In addition, we also report a high frequency of cryptic chromosomal RUNX1 translocation to a novel recently described gene partner, PRDM16 on chromosome 1p36, for 3 (21.4%) of 14 investigated patients: 2 myeloid BC CMLs and, for the first time, 1 therapy-related BCR-ABL+ ALL. Two patients presented both RUNX1 mutations and RUNX1-PRDM16 fusion. These events are associated with a short survival and support the concept of a cooperative effect of BCR-ABL with molecular RUNX1 abnormalities on the differentiation arrest phenotype observed during progression of CML and in BCR-ABL+ ALL.


Sign in / Sign up

Export Citation Format

Share Document