scholarly journals Three-Dimensional Morphology and Gene Expression Mapping for the Drosophila Blastoderm

2012 ◽  
Vol 2012 (2) ◽  
pp. pdb.top067843-pdb.top067843 ◽  
Author(s):  
D. W. Knowles
2002 ◽  
Vol 12 (6) ◽  
pp. 868-884 ◽  
Author(s):  
V. M. Brown ◽  
A. Ossadtchi ◽  
A. H. Khan ◽  
S. Yee ◽  
G. Lacan ◽  
...  

Neuroscience ◽  
2005 ◽  
Vol 136 (3) ◽  
pp. 625-632 ◽  
Author(s):  
S. Lindsay ◽  
S. Sarma ◽  
M. Martínez-de-la-Torre ◽  
J. Kerwin ◽  
M. Scott ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

Author(s):  
Guo‐Tzau Wang ◽  
He‐Yen Pan ◽  
Wei‐Han Lang ◽  
Yuan‐Ding Yu ◽  
Chang‐Huain Hsieh ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gayathri Subramanian ◽  
Alexander Stasuk ◽  
Mostafa Elsaadany ◽  
Eda Yildirim-Ayan

Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment.


2018 ◽  
Vol 29 (22) ◽  
pp. 2616-2621 ◽  
Author(s):  
Barbara J. Meyer

Determining sex is a binary developmental decision that most metazoans must make. Like many organisms, Caenorhabditis elegans specifies sex (XO male or XX hermaphrodite) by tallying X-chromosome number. We dissected this precise counting mechanism to determine how tiny differences in concentrations of signals are translated into dramatically different developmental fates. Determining sex by counting chromosomes solved one problem but created another—an imbalance in X gene products. We found that nematodes compensate for the difference in X-chromosome dose between sexes by reducing transcription from both hermaphrodite X chromosomes. In a surprising feat of evolution, X-chromosome regulation is functionally related to a structural problem of all mitotic and meiotic chromosomes: achieving ordered compaction of chromosomes before segregation. We showed the dosage compensation complex is a condensin complex that imposes a specific three-­dimensional architecture onto hermaphrodite X chromosomes. It also triggers enrichment of histone modification H4K20me1. We discovered the machinery and mechanism underlying H4K20me1 enrichment and demonstrated its pivotal role in regulating higher-order X-chromosome structure and gene expression.


Sign in / Sign up

Export Citation Format

Share Document