Sending classical information via noisy quantum channels

1997 ◽  
Vol 56 (1) ◽  
pp. 131-138 ◽  
Author(s):  
Benjamin Schumacher ◽  
Michael D. Westmoreland
2005 ◽  
Vol 03 (supp01) ◽  
pp. 87-95
Author(s):  
KURT JACOBS

To transmit classical information using a quantum system, the sender prepares the system in one of a set of possible states and sends it to the receiver. The receiver then makes a measurement on the system to obtain information about the senders choice of state. The amount of information which is accessible to the receiver depends upon the encoding and the measurement. Here we derive a bound on this information which generalizes the bound derived by Schumacher, Westmoreland and Wootters [Schumacher, Westmoreland and Wootters, Phys. Rev. Lett. 76, 3452 (1996)] to include inefficient measurements, and thus all quantum operations. This also allows us to obtain a generalization of a bound derived by Hall [Hall, Phys. Rev. A 55, 100 (1997)], and to show that the average reduction in the von Neumann entropy which accompanies a measurement is concave in the initial state, for all quantum operations.


2005 ◽  
Vol 16 (08) ◽  
pp. 1293-1301 ◽  
Author(s):  
TING GAO ◽  
FENGLI YAN ◽  
ZHIXI WANG

Two schemes for quantum secure conditional direct communication are proposed, where a set of EPR pairs of maximally entangled particles in Bell states, initially made by the supervisor Charlie, but shared by the sender Alice and the receiver Bob, functions as quantum information channels for faithful transmission. After insuring the security of the quantum channel and obtaining the permission of Charlie (i.e., Charlie is trustworthy and cooperative, which means the "conditional" in the two schemes), Alice and Bob begin their private communication under the control of Charlie. In the first scheme, Alice transmits secret message to Bob in a deterministic manner with the help of Charlie by means of Alice's local unitary transformations, both Alice and Bob's local measurements, and both of Alice and Charlie's public classical communication. In the second scheme, the secure communication between Alice and Bob can be achieved via public classical communication of Charlie and Alice, and the local measurements of both Alice and Bob. The common feature of these protocols is that the communications between two communication parties Alice and Bob depend on the agreement of the third side Charlie. Moreover, transmitting one bit secret message, the sender Alice only needs to apply a local operation on her one qubit and send one bit classical information. We also show that the two schemes are completely secure if quantum channels are perfect.


2003 ◽  
Vol 51 (45) ◽  
pp. 414-420
Author(s):  
C. Macchiavello ◽  
G.M. Palma

2005 ◽  
Vol 03 (01) ◽  
pp. 87-92 ◽  
Author(s):  
O. AKHAVAN ◽  
A. T. REZAKHANI ◽  
M. GOLSHANI

Using spatial entanglement of two particles the rate of classical information gain has been increased by a logarithmic factor depending on the dimension of Hilbert space. To study Bell state measurement (BSM) of the two particles, at first, we have defined corresponding Bell bases in a typically general form. Then, the basic position gates are theoretically designed by side quantum channels and the usual CNOT gate. All the processes required in the BSM can be established based upon the introduced local and conditional basic gates.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 555
Author(s):  
Xiao-Liang Qi ◽  
Daniel Ranard

In a quantum measurement process, classical information about the measured system spreads throughout the environment. Meanwhile, quantum information about the system becomes inaccessible to local observers. Here we prove a result about quantum channels indicating that an aspect of this phenomenon is completely general. We show that for any evolution of the system and environment, for everywhere in the environment excluding an O(1)-sized region we call the "quantum Markov blanket," any locally accessible information about the system must be approximately classical, i.e. obtainable from some fixed measurement. The result strengthens the earlier result of Brandão et al. (Nat. comm. 6:7908) in which the excluded region was allowed to grow with total environment size. It may also be seen as a new consequence of the principles of no-cloning or monogamy of entanglement. Our proof offers a constructive optimization procedure for determining the "quantum Markov blanket" region, as well as the effective measurement induced by the evolution. Alternatively, under channel-state duality, our result characterizes the marginals of multipartite states.


2004 ◽  
Vol 4 (6&7) ◽  
pp. 564-578
Author(s):  
A. Winter

We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical--quantum (cq) channels and ``quantum fingerprinting''. We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is in contrast to all previously considered models, where it turns out to equal the common randomness capacity (equals transmission capacity in our case): in particular, for a noiseless qubit, we show the identification capacity to be 2, while transmission and common randomness capacity are 1. Then we turn to a natural concept of identification of quantum messages (i.e. a notion of ``fingerprint'' for quantum states). This is much closer to quantum information transmission than its classical counterpart (for one thing, the code length grows only exponentially, compared to double exponentially for classical identification). Indeed, we show how the problem exhibits a nice connection to visible quantum coding. Astonishingly, for the noiseless qubit channel this capacity turns out to be 2: in other words, one can compress two qubits into one and this is optimal. In general however, we conjecture quantum identification capacity to be different from classical identification capacity.


Sign in / Sign up

Export Citation Format

Share Document