scholarly journals Key rate of quantum key distribution with hashed two-way classical communication

2007 ◽  
Vol 76 (3) ◽  
Author(s):  
Shun Watanabe ◽  
Ryutaroh Matsumoto ◽  
Tomohiko Uyematsu ◽  
Yasuhito Kawano
Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 333 ◽  
Author(s):  
Xiaodong Wu ◽  
Yijun Wang ◽  
Qin Liao ◽  
Hai Zhong ◽  
Ying Guo

We propose a simultaneous classical communication and quantum key distribution (SCCQ) protocol based on plug-and-play configuration with an optical amplifier. Such a protocol could be attractive in practice since the single plug-and-play system is taken advantage of for multiple purposes. The plug-and-play scheme waives the necessity of using two independent frequency-locked laser sources to perform coherent detection, thus the phase noise existing in our protocol is small which can be tolerated by the SCCQ protocol. To further improve its capabilities, we place an optical amplifier inside Alice’s apparatus. Simulation results show that the modified protocol can well improve the secret key rate compared with the original protocol whether in asymptotic limit or finite-size regime.


2010 ◽  
Vol 20 (03) ◽  
pp. 227-237 ◽  
Author(s):  
MARIUS NAGY ◽  
SELIM G. AKL

We develop an entanglement verification method not based on Bell inequalities, that achieves a higher reliability per number of qubits tested than existing procedures of this kind. Used in a quantum cryptographic context, the method gives rise to a new protocol for distributing classical keys through insecure quantum channels. The cost of quantum and classical communication is significantly reduced in the new protocol, while its security is increased with respect to other entanglement-based protocols exchanging the same number of qubits. To achieve this performance, our scheme relies on a simple quantum circuit and the ability to store qubits.


2007 ◽  
Vol 17 (03) ◽  
pp. 323-335 ◽  
Author(s):  
NAYA NAGY ◽  
SELIM G. AKL

The aim of quantum key distribution protocols is to establish a secret key among two parties with high security confidence. Such algorithms generally require a quantum channel and an authenticated classical channel. This paper presents a totally new perception of communication in such protocols. The quantum communication alone satisfies all needs of array communication between the two parties. Even so, the quantum communication channel does not need to be protected or authenticated whatsoever. As such, our algorithm is a purely quantum key distribution algorithm. The only certain identification of the two parties is through public keys.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750048
Author(s):  
Gerd Niestegge

A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.


2021 ◽  
Vol 21 (1&2) ◽  
pp. 0001-0018
Author(s):  
Daan Leermakers ◽  
Boris Skoric

We answer an open question about Quantum Key Recycling (QKR): Is it possible to put the message entirely in the qubits without increasing the number of qubits compared to existing QKR schemes? We show that this is indeed possible. We introduce a prepare-and-measure QKR protocol where the communication from Alice to Bob consists entirely of qubits. As usual, Bob responds with an authenticated one-bit accept/reject classical message. Compared to Quantum Key Distribution (QKD), QKR has reduced round complexity. Compared to previous qubit-based QKR protocols, our scheme has far less classical communication. We provide a security proof in the universal composability framework and find that the communication rate is asymptotically the same as for QKD with one-way postprocessing.


2019 ◽  
Vol 19 (15&16) ◽  
pp. 1279-1293
Author(s):  
Radha Pyari Sandhir

A quantum key distribution protocol is proposed that is a variation of BB84 that provides raw key generation from correlations that violate a Bell-type inequality for single qubit systems and not entangled pairs. Additionally, it 1) is state-independent, 2) involves two-way classical communication, and 3) does not require basis matching between the two parties. The Brukner-Taylor-Cheung-Vedral (BTCV) time-like form of the Bell-CHSH inequality by Bruk and by Tay is employed as an eavesdropping check; sequential measurements lead to an inequality identical in form to the Bell-CHSH inequality, which relies only on the measurements performed with no regard for the qubit states. We show that this form manifests naturally from the non-commutativity of observables.


Sign in / Sign up

Export Citation Format

Share Document