scholarly journals Simultaneous Classical Communication and Quantum Key Distribution Based on Plug-and-Play Configuration with an Optical Amplifier

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 333 ◽  
Author(s):  
Xiaodong Wu ◽  
Yijun Wang ◽  
Qin Liao ◽  
Hai Zhong ◽  
Ying Guo

We propose a simultaneous classical communication and quantum key distribution (SCCQ) protocol based on plug-and-play configuration with an optical amplifier. Such a protocol could be attractive in practice since the single plug-and-play system is taken advantage of for multiple purposes. The plug-and-play scheme waives the necessity of using two independent frequency-locked laser sources to perform coherent detection, thus the phase noise existing in our protocol is small which can be tolerated by the SCCQ protocol. To further improve its capabilities, we place an optical amplifier inside Alice’s apparatus. Simulation results show that the modified protocol can well improve the secret key rate compared with the original protocol whether in asymptotic limit or finite-size regime.

2020 ◽  
Vol 10 (12) ◽  
pp. 4175
Author(s):  
Chao Yu ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Ying Guo

Establishing high-rate secure communications is a potential application of continuous-variable quantum key distribution (CVQKD) but still challenging for the long-distance transmission technology compatible with modern optical communication systems. Here, we propose a photon subtraction-induced plug-and-play scheme for enhancing CVQKD with discrete-modulation (DM), avoiding the traditional loopholes opened by the transmission of local oscillator. A photon subtraction operation is involved in the plug-and-play scheme for detection while resisting the extra untrusted source noise of the DM-CVQKD system. We analyze the relationship between secret key rate, channel losses, and untrusted source noise. The simulation result shows that the photon-subtracted scheme enhances the performance in terms of the maximal transmission distance and make up for the deficiency of the original system effectively. Furthermore, we demonstrate the influence of finite-size effect on the secret key rate which is close to the practical implementation.


2019 ◽  
Vol 9 (22) ◽  
pp. 4956 ◽  
Author(s):  
Xinchao Ruan ◽  
Hang Zhang ◽  
Wei Zhao ◽  
Xiaoxue Wang ◽  
Xuan Li ◽  
...  

We investigate the optical absorption and scattering properties of four different kinds of seawater as the quantum channel. The models of discrete-modulated continuous-variable quantum key distribution (CV-QKD) in free-space seawater channel are briefly described, and the performance of the four-state protocol and the eight-state protocol in asymptotic and finite-size cases is analyzed in detail. Simulation results illustrate that the more complex is the seawater composition, the worse is the performance of the protocol. For different types of seawater channels, we can improve the performance of the protocol by selecting different optimal modulation variances and controlling the extra noise on the channel. Besides, we can find that the performance of the eight-state protocol is better than that of the four-state protocol, and there is little difference between homodyne detection and heterodyne detection. Although the secret key rate of the protocol that we propose is still relatively low and the maximum transmission distance is only a few hundred meters, the research on CV-QKD over the seawater channel is of great significance, which provides a new idea for the construction of global secure communication network.


2012 ◽  
Vol 12 (7&8) ◽  
pp. 630-647
Author(s):  
Bingjie Xu ◽  
Xiang Peng ◽  
Hong Guo

The SARG04 protocol is one of the most frequently used protocol in commercial plug-and-play quantum key distribution (QKD) system, where an eavesdropper can completely control or change the photon number statistics of the QKD source. To ensure the security of SARG04 protocol in plug-and-play QKD system with an unknown and untrusted source, the bounds of a few statistical parameters of the source need to be monitored. An active or a passive source monitor schemes are proposed to verify these parameters. Furthermore, the practical issues due to statistical fluctuation and detection noise in the source monitoring process are quantitatively analyzed. Our simulation results show that the passive scheme can be efficiently applied to plug-and-play system with SARG04 protocol.


2007 ◽  
Vol 17 (03) ◽  
pp. 323-335 ◽  
Author(s):  
NAYA NAGY ◽  
SELIM G. AKL

The aim of quantum key distribution protocols is to establish a secret key among two parties with high security confidence. Such algorithms generally require a quantum channel and an authenticated classical channel. This paper presents a totally new perception of communication in such protocols. The quantum communication alone satisfies all needs of array communication between the two parties. Even so, the quantum communication channel does not need to be protected or authenticated whatsoever. As such, our algorithm is a purely quantum key distribution algorithm. The only certain identification of the two parties is through public keys.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Víctor Zapatero ◽  
Marcos Curty

AbstractThe malicious manipulation of quantum key distribution (QKD) hardware is a serious threat to its security, as, typically, neither end users nor QKD manufacturers can validate the integrity of every component of their QKD system in practice. One possible approach to re-establish the security of QKD is to use a redundant number of devices. Following this idea, we address various corruption models of the possibly malicious devices and show that, compared to the most conservative model of active and collaborative corrupted devices, natural assumptions allow to significantly enhance the secret key rate or considerably reduce the necessary resources. Furthermore, we show that, for most practical situations, the resulting finite-size secret key rate is similar to that of the standard scenario assuming trusted devices.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1317
Author(s):  
Xuan Wen ◽  
Qiong Li ◽  
Haokun Mao ◽  
Xiaojun Wen ◽  
Nan Chen

Reconciliation is an essential procedure for continuous-variable quantum key distribution (CV-QKD). As the most commonly used reconciliation protocol in short-distance CV-QKD, the slice error correction (SEC) allows a system to distill more than 1 bit from each pulse. However, the quantization efficiency is greatly affected by the noisy channel with a low signal-to-noise ratio (SNR), which usually limits the secure distance to about 30 km. In this paper, an improved SEC protocol, named Rotated-SEC (RSEC), is proposed through performing a random orthogonal rotation on the raw data before quantization, and deducing a new estimator for the quantized sequences. Moreover, the RSEC protocol is implemented with polar codes. The experimental results show that the proposed protocol can reach up to a quantization efficiency of about 99%, and maintain at around 96% even at the relatively low SNRs (0.5,1), which theoretically extends the secure distance to about 45 km. When implemented with the polar codes with a block length of 16 Mb, the RSEC achieved a reconciliation efficiency of above 95%, which outperforms all previous SEC schemes. In terms of finite-size effects, we achieved a secret key rate of 7.83×10−3 bits/pulse at a distance of 33.93 km (the corresponding SNR value is 1). These results indicate that the proposed protocol significantly improves the performance of SEC and is a competitive reconciliation scheme for the CV-QKD system.


2011 ◽  
Vol 25 (08) ◽  
pp. 1061-1067
Author(s):  
WEI YANG ◽  
LIUSHENG HUANG ◽  
FANG SONG ◽  
QIYAN WANG

Secure key distribution is impossible in pure classical environment. Unconditional secure key distribution is available when quantum means are introduced, assisted by a classical communication channel. What is possible when a quantum key distribution scheme is without classical communication? We present a general model with this constraint and show that quantum key distribution without classical eavesdropping check is in principle impossible. For an adversary can always succeed in obtaining the secret key via a special case of man-in-the-middle attack, namely intercept-and-forward attack without any risk of being captured.


Author(s):  
Zhongqi Sun ◽  
Jipeng Wang ◽  
Zhenhua Li ◽  
Wenxiu Qu ◽  
Tianqi Dou ◽  
...  

During free-space quantum key distribution, the rotation and fluctuation of reference frame degrades the performance of quantum key distribution (QKD). Reference-frame-independent QKD (RFI-QKD) overcomes this issue effectively. To date, much theoretical and experimental research has been conducted on the performance of free-space RFI-QKD. However, these studies are all based on free-space air and satellite ground, and none have investigated the performance of RFI-QKD in an underwater channel. Therefore, this paper constructed a channel model that considered both scattering and optical attenuation to obtain an RFI-QKD secret key rate in an underwater channel. The simulation results confirm that even in a relatively harsh underwater scenario, RFI-QKD maintains good performance.


Quantum Key Distribution (QKD) has been developed over the last decade; QKD addresses the challenge of a securely exchanging cryptographic key between two parties over an insecure channel where there are two parties that simultaneously generate and share a secret key using the polarization of quantum states of light by applying the phenomena of quantum physics. The integration of QKD protocol with public key cryptography for securely exchanging the encryption/decryption keys is proposed and simulated, the simulation results evaluate the work of the existing and proposed protocol taking into account different measures. Finally, a short security analysis is given to show the difference between the proposed protocol and its counterparts.


Sign in / Sign up

Export Citation Format

Share Document