scholarly journals Quantum key distribution without the wavefunction

2017 ◽  
Vol 15 (06) ◽  
pp. 1750048
Author(s):  
Gerd Niestegge

A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

2007 ◽  
Vol 17 (03) ◽  
pp. 323-335 ◽  
Author(s):  
NAYA NAGY ◽  
SELIM G. AKL

The aim of quantum key distribution protocols is to establish a secret key among two parties with high security confidence. Such algorithms generally require a quantum channel and an authenticated classical channel. This paper presents a totally new perception of communication in such protocols. The quantum communication alone satisfies all needs of array communication between the two parties. Even so, the quantum communication channel does not need to be protected or authenticated whatsoever. As such, our algorithm is a purely quantum key distribution algorithm. The only certain identification of the two parties is through public keys.


2011 ◽  
Vol 25 (08) ◽  
pp. 1061-1067
Author(s):  
WEI YANG ◽  
LIUSHENG HUANG ◽  
FANG SONG ◽  
QIYAN WANG

Secure key distribution is impossible in pure classical environment. Unconditional secure key distribution is available when quantum means are introduced, assisted by a classical communication channel. What is possible when a quantum key distribution scheme is without classical communication? We present a general model with this constraint and show that quantum key distribution without classical eavesdropping check is in principle impossible. For an adversary can always succeed in obtaining the secret key via a special case of man-in-the-middle attack, namely intercept-and-forward attack without any risk of being captured.


2007 ◽  
Vol 76 (3) ◽  
Author(s):  
Shun Watanabe ◽  
Ryutaroh Matsumoto ◽  
Tomohiko Uyematsu ◽  
Yasuhito Kawano

Author(s):  
Catalin Anghel

This paper presents the development, comparison and analysis of several implementations of the B92 Quantum Key Distribution (QKD) protocol. In order to achieve this objective a prototype which consists of traditional (non-quantum) simulators was created, one for B92 protocol, one for B92 protocol with eavesdropper and one for B92 protocol with Quantum Bit Travel Time (QBTT) eavesdropper detection method. The principles of quantum mechanics were studied, as a foundation of quantum cryptography, for the realization of simulation programs that were written in C ++, focusing mainly on the B92 protocol and QBTT eavesdropper detection method. We compared the Quantum Bit Error Rate (QBER) for implementation of B92 protocol without eavesdropper, B92 protocol with eavesdropper and B92 protocol with QBTT eavesdropper detection method and found that QBTT eavesdropper detection method significantly reduces the QBER from the final key.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 333 ◽  
Author(s):  
Xiaodong Wu ◽  
Yijun Wang ◽  
Qin Liao ◽  
Hai Zhong ◽  
Ying Guo

We propose a simultaneous classical communication and quantum key distribution (SCCQ) protocol based on plug-and-play configuration with an optical amplifier. Such a protocol could be attractive in practice since the single plug-and-play system is taken advantage of for multiple purposes. The plug-and-play scheme waives the necessity of using two independent frequency-locked laser sources to perform coherent detection, thus the phase noise existing in our protocol is small which can be tolerated by the SCCQ protocol. To further improve its capabilities, we place an optical amplifier inside Alice’s apparatus. Simulation results show that the modified protocol can well improve the secret key rate compared with the original protocol whether in asymptotic limit or finite-size regime.


2011 ◽  
Vol 11 (7&8) ◽  
pp. 615-637
Author(s):  
Tzonelih Hwang ◽  
Chia-Wei Tsai ◽  
Song-Kong Chong

This work presents a new concept in quantum key distribution called the probabilistic quantum key distribution (PQKD) protocol, which is based on the measurement uncertainty in quantum phenomena. It allows two mutually untrusted communicants to negotiate an unpredictable key that has a randomness guaranteed by the laws of quantum mechanics. In contrast to conventional QKD (e.g., BB84) in which one communicant has to trust the other for key distribution or quantum key agreement (QKA) in which the communicants have to artificially contribute subkeys to a negotiating key, PQKD is a natural and simple method for distributing a secure random key. The communicants in the illustrated PQKD take Einstein-Podolsky-Rosen (EPR) pairs as quantum resources and then use entanglement swapping and Bell-measurements to negotiate an unpredictable key.


2010 ◽  
Vol 20 (03) ◽  
pp. 227-237 ◽  
Author(s):  
MARIUS NAGY ◽  
SELIM G. AKL

We develop an entanglement verification method not based on Bell inequalities, that achieves a higher reliability per number of qubits tested than existing procedures of this kind. Used in a quantum cryptographic context, the method gives rise to a new protocol for distributing classical keys through insecure quantum channels. The cost of quantum and classical communication is significantly reduced in the new protocol, while its security is increased with respect to other entanglement-based protocols exchanging the same number of qubits. To achieve this performance, our scheme relies on a simple quantum circuit and the ability to store qubits.


Sign in / Sign up

Export Citation Format

Share Document