scholarly journals von Neumann lattices in finite-dimensional Hilbert spaces

2008 ◽  
Vol 78 (1) ◽  
Author(s):  
M. Revzen ◽  
F. C. Khanna
Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


Author(s):  
B. V. RAJARAMA BHAT ◽  
R. SRINIVASAN

B. Tsirelson constructed an uncountable family of type III product systems of Hilbert spaces through the theory of Gaussian spaces, measure type spaces and "slightly colored noises", using techniques from probability theory. Here we take a purely functional analytic approach and try to have a better understanding of Tsireleson's construction and his examples. We prove an extension of Shale's theorem connecting symplectic group and Weyl representation. We show that the "Shale map" respects compositions (this settles an old conjecture of K. R. Parthasarathy8). Using this we associate a product system to a sum system. This construction includes the exponential product system of Arveson, as a trivial case, and the type III examples of Tsirelson. By associating a von Neumann algebra to every "elementary set" in [0, 1], in a much simpler and direct way, we arrive at the invariants of the product system introduced by Tsirelson, given in terms of the sum system. Then we introduce a notion of divisibility for a sum system, and prove that the examples of Tsirelson are divisible. It is shown that only type I and type III product systems arise out of divisible sum systems. Finally, we give a sufficient condition for a divisible sum system to give rise to a unitless (type III) product system.


1992 ◽  
Vol 29 (4) ◽  
pp. 921-931 ◽  
Author(s):  
Mohsen Pourahmadi

By using the alternating projection theorem of J. von Neumann, we obtain explicit formulae for the best linear interpolator and interpolation error of missing values of a stationary process. These are expressed in terms of multistep predictors and autoregressive parameters of the process. The key idea is to approximate the future by a finite-dimensional space.


1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1973 ◽  
Vol 16 (3) ◽  
pp. 455-456
Author(s):  
I. M. Michael

Let H be a Hilbert space with inner product 〈,). A well-known theorem of von Neumann states that, if S is a symmetric operator in H, then S has a selfadjoint extension in H if and only if S has equal deficiency indices. This result was extended by Naimark, who proved that, even if the deficiency indices of S are unequal, there always exists a Hilbert space H1 such that H ⊆ H1 and S has a selfadjoint extension in H1.


Sign in / Sign up

Export Citation Format

Share Document