scholarly journals Long spin coherence times in the ground state and in an optically excited state of Er3+167:Y2SiO5 at zero magnetic field

2020 ◽  
Vol 101 (18) ◽  
Author(s):  
Jelena V. Rakonjac ◽  
Yu-Hui Chen ◽  
Sebastian P. Horvath ◽  
Jevon J. Longdell
2007 ◽  
Vol 3 (S242) ◽  
pp. 162-163
Author(s):  
B. Hutawarakorn Kramer ◽  
J. L. Caswell ◽  
A. Sukom ◽  
J. E. Reynolds

AbstractOH masers are sensitive probes of the kinematics, physical conditions, and magnetic fields in star-forming regions. The maser site OH 330.953-0.182 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yield a series of maps at velocity spacing 0.09kms−1, in both right- and left-hand circular polarization, with tenth-arcsec spatial resolution. Several clusters of maser spots have been detected within a five-arcsec region. Eight Zeeman pairs were found, and in one case, at 1665 MHz, there is a nearby 1667-MHz pair indicating a similar value of magnetic field and velocity. Over the whole site, all magnetic field estimates are toward us (negative), and range from -3.7 to -5.8 mG. We also compared the morphology and kinematics of the 1665- and 1667-MHz maser spots with those from the excited state of OH at 6035 MHz and from methanol at 6668 MHz.


2022 ◽  
Vol 130 (1) ◽  
pp. 23
Author(s):  
Eloise Lafitte-Houssat ◽  
Alban Ferrier ◽  
Mikael Afzelius ◽  
Perrine Berger ◽  
Loic Morvan ◽  
...  

Rare earth ions are actively investigated as optically addressable spin systems for quantum technologies thanks to their long optical and spin coherence lifetimes. 171Yb3+, which has 1/2 electron and nuclear spins, recently raised interest for its simple hyperfine structure that moreover can result in long coherence lifetimes at zero magnetic field, an unusual property for paramagnetic rare earth ions. Here, we report on the optical inhomogeneous and homogeneous linewidths in 171Yb3+:Y2SiO5 (site 2) for different doping concentrations. While inhomogeneous linewidth is not correlated to 171Yb3+ concentration, the homogeneous one strongly decreases between 10 and 2 ppm doping level, reaching 255 Hz at 3 K. This is attributed to a slowing down of 171Yb3+ ground state spin flip-flops.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1517
Author(s):  
Hyun-Gue Hong ◽  
Sang Eon Park ◽  
Sang-Bum Lee ◽  
Myoung-Sun Heo ◽  
Jongcheol Park ◽  
...  

We report a chip-scale atomic magnetometer based on coherent population trapping, which can operate near zero magnetic field. By exploiting the asymmetric population among magnetic sublevels in the hyperfine ground state of cesium, we observe that the resonance signal acquires sensitivity to magnetic field in spite of degeneracy. A dispersive signal for magnetic field discrimination is obtained near-zero-field as well as for finite fields (tens of micro-tesla) in a chip-scale device of 0.94 cm3 volume. This shows that it can be readily used in low magnetic field environments, which have been inaccessible so far in miniaturized atomic magnetometers based on coherent population trapping. The measured noise floor of 300 pT/Hz1/2 at the zero-field condition is comparable to that of the conventional finite-field measurement obtained under the same conditions. This work suggests a way to implement integrated atomic magnetometers with a wide operating range.


Author(s):  
Bruno Colbois ◽  
Alessandro Savo

AbstractWe obtain upper bounds for the first eigenvalue of the magnetic Laplacian associated to a closed potential 1-form (hence, with zero magnetic field) acting on complex functions of a planar domain $$\Omega $$ Ω , with magnetic Neumann boundary conditions. It is well known that the first eigenvalue is positive whenever the potential admits at least one non-integral flux. By gauge invariance, the lowest eigenvalue is simply zero if the domain is simply connected; then, we obtain an upper bound of the ground state energy depending only on the ratio between the number of holes and the area; modulo a numerical constant the upper bound is sharp and we show that in fact equality is attained (modulo a constant) for Aharonov-Bohm-type operators acting on domains punctured at a maximal $$\epsilon $$ ϵ -net. In the last part, we show that the upper bound can be refined, provided that one can transform the given domain in a simply connected one by performing a number of cuts with sufficiently small total length; we thus obtain an upper bound of the lowest eigenvalue by the ratio between the number of holes and the area, multiplied by a Cheeger-type constant, which tends to zero when the domain is metrically close to a simply connected one.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document