Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well

1995 ◽  
Vol 51 (15) ◽  
pp. 9930-9942 ◽  
Author(s):  
N. Bannov ◽  
V. Aristov ◽  
V. Mitin ◽  
M. A. Stroscio
VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 197-200
Author(s):  
N. A. Bannov ◽  
V. V. Mitin ◽  
F. T. Vasko

The transport of confined acoustic phonons in a flee-standing quantum well has been studied by solving the quantum kinetic equation for phonons. The phonon decay rate has been numerically calculated for GaAs flee-standing quantum well. Phonon interaction with electrons through the deformation potential makes the major contribution to the acoustic phonon decay.


2018 ◽  
Vol 783 ◽  
pp. 1-11
Author(s):  
Le Thai Hung ◽  
Pham Ngoc Thang ◽  
Nguyen Quang Bau

The Shubnikov – de Haas magnetoresistance oscillations in the Quantum well (QW) under the influence of confined acoustic phonons, The theoretical results show that the conductivity tensor, the complex magnetic impedance of the magnetic field, the frequency, the amplitude of the laser radiation, the QW width, the temperature of the system and especially the quantum index m characterizes the confinement of the phonon. The amplitude of the oscillations of the Shubnikov-de Haas impedance decreases with the increase of the influence of the confined acoustic phonons. The results for bulk phonons in a QW could be achieved, when m goes to zero. We has been compared with other studies when perform the numerical calculations are also achieved for the GaAs/AlGaAs in the QW. Results show that The Shubnikov-de Haas magnetoresistance oscillations amplitude decrease when phonon confinement effect increasing and when width L of the QW increases to a certain value, The Shubnikov – de Haas magnetoresistance oscillations amplitude completely disappears can not be observed.


2019 ◽  
Vol 954 ◽  
pp. 51-59
Author(s):  
Xi Duo Hu ◽  
Cheng Ming Li ◽  
Shao Yan Yang

Abstract:Electron mobility limited by surface roughness scattering in free-standing GaAs thin ribbon with an internal parabolic quantum well caused by surface state is investigated in detail. Based on analyzing the parabolic quantum well including the energy subband level, wave function and the confined potential profile in the thin ribbon by solving Schrödinger and Poisson equations self-consistently, the electron mobility could be investigated. Conclusion indicates that remote surface roughness (RSR) of the thin ribbon will change the two dimensional electron gas (2DEG) mobility through the medium of barrier height fluctuation of the parabolic well in atomic scale. Calculation results reveal that the 2DEG mobility decreases with increasing roughness amplitude, which is characterized in terms of the surface roughness height and the roughness lateral size.


Sign in / Sign up

Export Citation Format

Share Document