Erratum: Hydrogen density-of-states distribution in zinc oxide [Phys. Rev. B68, 193303 (2003)]

2006 ◽  
Vol 74 (8) ◽  
Author(s):  
N. H. Nickel ◽  
K. Brendel
1997 ◽  
Vol 467 ◽  
Author(s):  
A. J. Franz ◽  
W. B. Jackson ◽  
J. L. Gland

ABSTRACTHydrogen plays an important role in the electronic behavior, structure and stability of amorphous silicon films. Therefore, determination of the hydrogen density of states (DOS) and correlation of the hydrogen DOS with the electronic film properties are important research goals. We have developed a novel method for determination of hydrogen DOS in silicon films, based on fractional evolution experiments. Fractional evolution experiments are performed by subjecting a silicon film to a series of linear, alternating heating and cooling ramps, while monitoring the hydrogen evolution rate. The fractional evolution data can be analyzed using two complementary memods, the fixed frequency factor approach and Arrhenius analysis. Using a rigorous, mean-field evolution model, we demonstrate the applicability of the two approaches to obtaining the hydrogen DOS in silicon films. We further validate both methods by analyzing experimental fractional evolution data foran amorphous silicon carbide film. Both types of analysis yield a similar double peaked density of states for the a-Si:C:H:D film.


1994 ◽  
Vol 336 ◽  
Author(s):  
S.C. Deane ◽  
M.J. Powell

ABSTRACTWe derive the hydrogen density of states for hydrogenated Amorphous silicon (a-Si:H), which is completely consistent with the electronic density of states for the defect pool model. If silicon dangling bond energies are distributed in energy, as in a defect pool model, then the hydrogen density of states becomes quite complex, with the hydrogen binding energy dependent on the Fermi level and dangling bond transition energy. We demonstrate that the electronic density of states for dangling bonds is almost identical to our previous defect pool model, while the hydrogen density of states can account for the results of hydrogenation-dehydrogenation experiments. The effective hydrogen correlation energy is variable, being negative for most hydrogen binding sites, but positive for most defect sites.


2021 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Ovier Obregon ◽  
David Barba ◽  
Miguel A. Dominguez

In this work, using a physically based simulator, the modeling of the density of states (DOS) through the fitting of the electrical characteristics in field-effect devices is presented. The transfer characteristic of zinc oxide (ZnO) thin-film transistors is simulated, along with the capacitance–voltage curves in metal-insulator-semiconductor capacitors using ZnO as an active layer. The ZnO semiconductor devices were fabricated by high-frequency ultrasonic spray pyrolysis on polyethylene terephthalate plastic substrates. Different aspects were considered and discussed to model the device interfaces.


2000 ◽  
Vol 623 ◽  
Author(s):  
D. L. Young ◽  
T. J. Coutts ◽  
X. Li ◽  
J. Keane ◽  
V. I. Kaydanov ◽  
...  

AbstractTransparent conducting oxides (TCO) have relatively low mobilities, which limit their performance optically and electrically, and which limit the techniques that may be used to explore their band structure via the effective mass. We have used transport theory to directly measure the density-of-states effective mass and other fundamental electronic properties of TCO films. The Boltzmann transport equation may be solved to give analytic solutions to the resistivity, Hall, Seebeck, and Nernst coefficients. In turn, these may be solved simultaneously to give the density-of-states effective mass, the Fermi energy relative to either the conduction or valence band, and a scattering parameter, s, which characterizes the relaxation time dependence on the carrier energy and can serve as a signature of the dominate scattering mechanism. The little-known Nernst effect is essential for determining the scattering parameter and, thereby, the effective scattering mechanism(s). We constructed equipment to measure these four transport coefficients on the same sample over a temperature range of 30 – 350 K for thin films deposited on insulating substrates. We measured the resistivity, Hall, Seebeck, and Nernst coefficients for rf magnetron-sputtered aluminum-doped zinc oxide. We found that the effective mass for zinc oxide increases from a minimum value of 0.24me, up to a value of 0.47me, at a carrier density of 4.5 × 1020 cm−3, indicating a nonparabolic conduction energy band. In addition, our measured density-of-states effective values are nearly equal to conductivity effective mass values estimated from the plasma frequency, denoting a single energy minimum with a nearly spherical, constant-energy surface. The measured scattering parameter, mobility vs. temperature, along with Seebeck coefficient values, characterize ionized impurity scattering in the ZnO:AI and neutral impurity scattering in the undoped material.


2021 ◽  
Vol 129 (19) ◽  
pp. 195704
Author(s):  
N. H. Nickel ◽  
K. Geilert

Sign in / Sign up

Export Citation Format

Share Document