scholarly journals Electric field control of multiferroic domains inNi3V2O8imaged by x-ray polarization-enhanced topography

2010 ◽  
Vol 82 (2) ◽  
Author(s):  
F. Fabrizi ◽  
H. C. Walker ◽  
L. Paolasini ◽  
F. de Bergevin ◽  
T. Fennell ◽  
...  
Keyword(s):  
X Ray ◽  
ChemInform ◽  
2012 ◽  
Vol 43 (48) ◽  
pp. no-no
Author(s):  
M. B. Holcomb ◽  
S. Polisetty ◽  
A. Fraile Rodriguez ◽  
V. Gopalan ◽  
R. Ramesh

2012 ◽  
Vol 26 (10) ◽  
pp. 1230004 ◽  
Author(s):  
M. B. HOLCOMB ◽  
S. POLISETTY ◽  
A. FRAILE RODRÍGUEZ ◽  
V. GOPALAN ◽  
R. RAMESH

This paper discusses recent efforts to control magnetism with electric fields in single and multilayer oxides, which has great potential to improve a variety of technological endeavors, such as magnetic sensing and magnetoelectric (ME) logic. The importance of electrical control of magnetism is followed by a discussion of multiferroics and MEs, which are the leading contenders for this task. The focus of this paper is on complementary methods in understanding the ME coupling, an essential step to electrical control of magnetism. Neutron scattering, nonlinear optics and X-ray spectromicroscopy are addressed in providing key parameters in the study of ME coupling. While primarily direct (single-phase multiferroics) ME materials are used as examples, the techniques discussed are also valuable to the study of indirect (e.g., multilayers and pillars) magnetoelectrics. We conclude with a summary of the field and future directions.


SPIN ◽  
2013 ◽  
Vol 03 (03) ◽  
pp. 1340008 ◽  
Author(s):  
S. FINIZIO ◽  
M. FOERSTER ◽  
C. A. F. VAZ ◽  
C. MIX ◽  
M. A. MAWASS ◽  
...  

We investigate the effects of piezoelectric-generated strain on the magnetization configuration of Ni nanostructures fabricated on pre-poled piezoelectric (011) [ Pb ( Mg 0.33 Nb 0.66) O 3]0.68–[ PbTiO 3]0.32 (PMN–PT) by high resolution X-ray microscopy. We observe a strong uniaxial anisotropy in the Ni nanostructures, due to the relaxation of the substrate following the deposition of the Ni . The anisotropy can be modified by the application of an electric field to the piezoelectric substrate (thus generating a piezoelectric strain in the system) through the magneto-elastic effect. By applying an electric field to the PMN–PT, the magnetization configuration in nanostructured Ni squares and rings was reversibly manipulated with a high reproducibility.


2018 ◽  
Vol 189 (02) ◽  
pp. 187-194 ◽  
Author(s):  
Nikita V. Marchenkov ◽  
Anton G. Kulikov ◽  
Ivan I. Atknin ◽  
Arsen A. Petrenko ◽  
Alexander E. Blagov ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivier Maillet ◽  
Diego Subero ◽  
Joonas T. Peltonen ◽  
Dmitry S. Golubev ◽  
Jukka P. Pekola

CrystEngComm ◽  
2021 ◽  
Author(s):  
Yuzhu Pan ◽  
Xin Wang ◽  
Jingda Zhao ◽  
Yubing Xu ◽  
Yuwei Li ◽  
...  

Perovskites single crystals (PSCs) could be used to made high performance photoelectric detectors due to its superior optoelectronic characteristics. Generally, external electric field need to be applied in the PSCs-based...


2021 ◽  
pp. 2101316
Author(s):  
Weinan Lin ◽  
Liang Liu ◽  
Qing Liu ◽  
Lei Li ◽  
Xinyu Shu ◽  
...  

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R. Nemati Siahmazgi ◽  
S. Jafari

The purpose of the present paper is to investigate the generation of soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. The electric field of the laser beam interacts with the nanocluster and leads to ionization of the cluster atoms, which then produces a nanoplasma. Because of the nonlinear restoring force in an anharmonic nanoplasma, the fluctuations and heating rate of, as well as the power radiated by, the electrons in the nanocluster plasma will be notably different from those arising from a linear restoring force. By comparing the nonlinear restoring force state (which arises from an anharmonic cluster) with that of the linear restoring force (in harmonic clusters), the cluster temperature specifically changes at the resonant frequency relative to the linear restoring force, while the variation of the anharmonic cluster radius is almost identical to that of the harmonic cluster radius. In addition, it is revealed that a sharp peak of X-ray emission arises after some picoseconds in deuterium, helium, neon and argon clusters.


2018 ◽  
Vol 10 (3) ◽  
pp. 2843-2849 ◽  
Author(s):  
Weiming Lv ◽  
Zhiyan Jia ◽  
Bochong Wang ◽  
Yuan Lu ◽  
Xin Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document