scholarly journals Ferroelectric ground state and polarization-switching path of orthorhombic YMnO3with coexistingE-type and cycloidal spin phases

2013 ◽  
Vol 88 (1) ◽  
Author(s):  
Jung-Hoon Lee ◽  
Seungwoo Song ◽  
Hyun Myung Jang
Author(s):  
S. H. Baek ◽  
C. B. Eom

As a room temperature multi-ferroic with coexisting anti-ferromagnetic, ferroelectric and ferroelastic orders, BiFeO 3 has been extensively studied to realize magnetoelectric devices that enable manipulation of magnetic ordering by an electric field. Moreover, BiFeO 3 is a promising candidate for ferroelectric memory devices because it has the largest remanent polarization ( P r >100 μC cm −2 ) of all ferroelectric materials. For these applications, controlling polarization switching by an electric field plays a crucial role. However, BiFeO 3 has a complex switching behaviour owing to the rhombohedral symmetry: ferroelastic (71 ° , 109 ° ) and ferroelectric (180 ° ) switching. Furthermore, the polarization is switched through a multi-step process: 180 ° switching occurs through three sequential 71 ° switching steps. By using monodomain BiFeO 3 thin-film heterostructures, we correlated such multi-step switching to the macroscopically observed reliability issues of potential devices such as retention and fatigue. We overcame the retention problem (i.e. elastic back-switching of the 71 ° switched area) using monodomain BiFeO 3 islands. Furthermore, we suppressed the fatigue problem of 180 ° switching, i.e. loss of switchable polarization with switching cycles, using a single 71 ° switching path. Our results provide a framework for exploring a route to reliably control multiple-order parameters coupled to ferroelastic order in other rhombohedral and lower-symmetry materials.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

1971 ◽  
Vol 32 (C6) ◽  
pp. C6-289-C6-290
Author(s):  
P. THIEBERGER ◽  
A. W. SUNYAR ◽  
P. C. ROGERS ◽  
N. LARK ◽  
O. C. KISTNER ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document