scholarly journals Tunable mechanical and thermal properties of ZnS/CdS core/shell nanowires

2015 ◽  
Vol 91 (10) ◽  
Author(s):  
Taraknath Mandal ◽  
Chandan Dasgupta ◽  
Prabal K. Maiti
BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2861-2875
Author(s):  
Yu Xian ◽  
Cuicui Wang ◽  
Ge Wang ◽  
Leemiller Smith ◽  
Haitao Cheng

The purpose of the study was to inspect the mechanical and thermal properties of four kinds of core-shell structured bamboo-plastic composites (BPCs). The materials that were used for the fabrication of the BPCs were high density polyethylene (HDPE), bamboo pulp fibers (BPF)/HDPE, nano-CaCO3/HDPE, and white mud (WM)/HDPE. As verified by flexural properties and impact properties, the dispersion of the BPF, nano-CaCO3, and WM in the HDPE matrix was inhomogeneous. The fracture surface of the scanning electron microscope (SEM) images showed that some aggregates existed in the HDPE. Additionally, X-ray diffraction (XRD) was used to corroborate the results. The thermogravimetric analysis (TGA) showed that the samples with the WM/HDPE shell has little effect on the thermal stability. However, the apparent activation energy (Ea) values of the nano-CaCO3/HDPE shell were higher than those of the other samples, which indicated better thermal stability. The thermal stability had no remarkable changes with the addition of the WM and BPF. The differential scanning calorimeter (DSC) curves revealed that the relative crystallinity of the BPCs increased with the addition fillers, which suggested that the fillers can act as nucleating agents.


2016 ◽  
Vol 119 (7) ◽  
pp. 074304 ◽  
Author(s):  
Th. Pavloudis ◽  
K. Termentzidis ◽  
Ph. Komninou ◽  
C. D. Latham ◽  
P. R. Briddon ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Janez Slapnik ◽  
Rajko Bobovnik ◽  
Maja Mešl ◽  
Silvester Bolka

We investigated the effects of two different types of impact modifiers, i.e. core-shell rubber and aliphatic polyester, on the mechanical and thermal properties of polylactide (PLA) filaments for 3D printing. First, PLA/impact modifier blends with various concentrations of impact modifiers were prepared by melt blending in a co-rotating twin screw extruder and test specimens by injection molding. The mechanical and thermal properties of blends were investigated by tensile and bending tests, dynamic mechanical analysis (DMA) and Charpy impact test. It was found that core-shell rubber remarkably improved Charpy impact strength at loadings above 5 wt % (up to 746 %). As shown by DMA, the PLA/10 wt % core-shell rubber blend exhibited better damping performance as compared to neat PLA over the whole examined frequency range, especially at high frequencies, which explained the increase in impact strength. The filament for a fused deposition modeling (FDM), 3D printer was prepared from blend with the highest impact strength (PLA/10 wt % core-shell rubber), whereas PLA and acrylonitrile-butadiene-styrene copolymer (ABS) filaments were used for reference. Test specimens were prepared by using a consumer FDM 3D printer. The mechanical and thermal properties were investigated by tensile and bending tests, DMA, Charpy impact test, and ultra-fast differential scanning calorimetry (Flash DSC). Specimens from PLA blend exhibited 109 % increase in Charpy impact strength as compared to neat PLA. In contrast to injection molded specimens, 3D printed PLA blend exhibited higher tensile E modulus than neat PLA, which was ascribed to improved interlayer adhesion. Moreover, DMA and Flash DSC analysis of 3D printed specimens showed an increase in the glass transition temperature as compared to injection molded specimens. This phenomenon was ascribed to reduction of free volume because of slow cooling in 3D printing process, which is also the reason for increased tensile E modulus of the PLA blend. All tested PLA, PLA blend and ABS filaments were in amorphous state as shown by Flash DSC analysis. Bending test showed an increased toughness of PLA blend in comparison to neat PLA and also higher toughness as compared to ABS. The modified polylactide (PLA/10 wt % core-shell rubber) filament thus combines easy processability of PLA filament and impact toughness of ABS filament.


Sign in / Sign up

Export Citation Format

Share Document