scholarly journals Quantum electrodynamics of resonance energy transfer in nanowire systems

2016 ◽  
Vol 93 (7) ◽  
Author(s):  
Dilusha Weeraddana ◽  
Malin Premaratne ◽  
David L. Andrews
Atoms ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
A. Salam

An overview is given of the molecular quantum electrodynamical (QED) theory of resonance energy transfer (RET). In this quantized radiation field description, RET arises from the exchange of a single virtual photon between excited donor and unexcited acceptor species. Diagrammatic time-dependent perturbation theory is employed to calculate the transfer matrix element, from which the migration rate is obtained via the Fermi golden rule. Rate formulae for oriented and isotropic systems hold for all pair separation distances, R, beyond wave function overlap. The two well-known mechanisms associated with migration of energy, namely the R−6 radiationless transfer rate due to Förster and the R−2 radiative exchange, correspond to near- and far-zone asymptotes of the general result. Discriminatory pair transfer rates are also presented. The influence of an environment is accounted for by invoking the polariton, which mediates exchange and by introducing a complex refractive index to describe local field and screening effects. This macroscopic treatment is compared and contrasted with a microscopic analysis in which the role of a neutral, polarizable and passive third-particle in mediating transfer of energy is considered. Three possible coupling mechanisms arise, each requiring summation over 24 time-ordered diagrams at fourth-order of perturbation theory with the total rate being a sum of two- and various three-body terms.


2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


2020 ◽  
Author(s):  
Lucas S. Ryan ◽  
Jeni Gerberich ◽  
Uroob Haris ◽  
ralph mason ◽  
Alexander Lippert

<p>Regulation of physiological pH is integral for proper whole-body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, comprised of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8-8.4, making it viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished both using common fluorimetry and advanced optical imaging methods. Using an IVIS Spectrum, pH can be quantified through tissue with Ratio-pHCL-1, which has been shown in vitro and precisely calibrated in sacrificed mouse models. Initial studies showed that intraperitoneal injections of Ratio-pHCL-1 into sacrificed mice produce a photon flux of more than 10^10 photons per second, and showed a significant difference in ratio of emission intensities between pH 6.0, 7.0, and 8.0.</p> <b></b><i></i><u></u><sub></sub><sup></sup><br>


Sign in / Sign up

Export Citation Format

Share Document