scholarly journals Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2

2017 ◽  
Vol 96 (16) ◽  
Author(s):  
Wenhan Zhang ◽  
Quansheng Wu ◽  
Lunyong Zhang ◽  
Sang-Wook Cheong ◽  
Alexey A. Soluyanov ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qinsheng Wang ◽  
Jingchuan Zheng ◽  
Yuan He ◽  
Jin Cao ◽  
Xin Liu ◽  
...  

AbstractPhotosensing and energy harvesting based on exotic properties of quantum materials and new operation principles have great potential to break the fundamental performance limit of conventional photodetectors and solar cells. Weyl semimetals have demonstrated novel optoelectronic properties that promise potential applications in photodetection and energy harvesting arising from their gapless linear dispersion and Berry field enhanced nonlinear optical effect at the vicinity of Weyl nodes. In this work, we demonstrate robust photocurrent generation at the edge of Td-WTe2, a type-II Weyl semimetal, due to crystalline-symmetry breaking along certain crystal fracture directions and possibly enhanced by robust fermi-arc type surface states. This edge response is highly generic and arises universally in a wide class of quantum materials with similar crystal symmetries. The robust and generic edge current response provides a charge separation mechanism for photosensing and energy harvesting over broad wavelength range.


2016 ◽  
Vol 117 (26) ◽  
Author(s):  
Hao Zheng ◽  
Guang Bian ◽  
Guoqing Chang ◽  
Hong Lu ◽  
Su-Yang Xu ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Davide Iaia ◽  
Guoqing Chang ◽  
Tay-Rong Chang ◽  
Jin Hu ◽  
Zhiqiang Mao ◽  
...  

2018 ◽  
Vol 97 (16) ◽  
Author(s):  
Yuan Yuan ◽  
Xing Yang ◽  
Lang Peng ◽  
Zhi-Jun Wang ◽  
Jian Li ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Ying Xing ◽  
Zhibin Shao ◽  
Jun Ge ◽  
Jiawei Luo ◽  
Jinhua Wang ◽  
...  

Abstract The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with the minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/STS) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, and thickness- and angular-dependent transport measurements reveal that the detected superconductivity is quasi-1D and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.


2016 ◽  
Vol 2 (6) ◽  
pp. e1600295 ◽  
Author(s):  
Guoqing Chang ◽  
Su-Yang Xu ◽  
Daniel S. Sanchez ◽  
Shin-Ming Huang ◽  
Chi-Cheng Lee ◽  
...  

Weyl semimetals are of great interest because they provide the first realization of the Weyl fermion, exhibit exotic quantum anomalies, and host Fermi arc surface states. The separation between Weyl nodes of opposite chirality gives a measure of the robustness of the Weyl semimetal state. To exploit the novel phenomena that arise from Weyl fermions in applications, it is crucially important to find robust separated Weyl nodes. We propose a methodology to design robust Weyl semimetals with well-separated Weyl nodes. Using this methodology as a guideline, we search among the material parameter space and identify by far the most robust and ideal Weyl semimetal candidate in the single-crystalline compound tantalum sulfide (Ta3S2) with new and novel properties beyond TaAs. Crucially, our results show that Ta3S2has the largestk-space separation between Weyl nodes among known Weyl semimetal candidates, which is about twice larger than the measured value in TaAs and 20 times larger than the predicted value in WTe2. Moreover, all Weyl nodes in Ta3S2are of type II. Therefore, Ta3S2is a type II Weyl semimetal. Furthermore, we predict that increasing the lattice by <4% can annihilate all Weyl nodes, driving a novel topological metal-to-insulator transition from a Weyl semimetal state to a topological insulator state. The robust type II Weyl semimetal state and the topological metal-to-insulator transition in Ta3S2are potentially useful in device applications. Our methodology can be generally applied to search for new Weyl semimetals.


2019 ◽  
Vol 5 (8) ◽  
pp. 1900250 ◽  
Author(s):  
Wei Zhou ◽  
Bin Li ◽  
Chun Qiang Xu ◽  
Maarten R. Delft ◽  
Yu Ge Chen ◽  
...  
Keyword(s):  
Type Ii ◽  

2021 ◽  
pp. 413062
Author(s):  
V. Nagpal ◽  
K.S. Jat ◽  
S. Patnaik
Keyword(s):  
Type Ii ◽  

Sign in / Sign up

Export Citation Format

Share Document