Robustness of “noncollective” rotational behavior for nuclei in the presence of random interactions

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
J. J. Shen ◽  
H. Jiang ◽  
G. J. Fu
2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


Author(s):  
Hui-Miao Li ◽  
Gui-Ming Zhong ◽  
Shu-Qi Wu ◽  
Osamu Sato ◽  
Xiao-Yan Zheng ◽  
...  

2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Chenyuan Li ◽  
Darshan G. Joshi ◽  
Subir Sachdev
Keyword(s):  

1992 ◽  
Vol 3 (2-3) ◽  
pp. 139-150 ◽  
Author(s):  
Jacob S. Manaster ◽  
Tony Feuerman ◽  
C. Patrick Reynolds ◽  
Charles H. Markham

Cultured human catecholaminergic and noncatecholaminergic donor cells were used in neural transplantation experiments in a rat model of Parkinson's disease. Using two different human catecholaminergic neuroblastoma cell lines, one control non-catecholaminergic neuroblastoma cell line, and one sham control (tissue culture medium), transplants were made into the striatum using a modified Ungerstedt hemiparkinsonian rat model. Significant decreases in apomorphine-induced rotational behavior were produced by two of three catecholaminergic cell lines. Grafted cells staining positively for tyrosine hydroxylase (TH) and catecholamine fluorescence indicated viable catecholamine activity in the two cell lines which produced reductions in rotational behavior. Catecholamine fluorescence was not detected in either of the two controls. These data suggest a link between catecholamine secretion by transplanted cells and motor improvement using a rat rotational behavior model.


2018 ◽  
Vol 285 (1883) ◽  
pp. 20180836 ◽  
Author(s):  
Jukka Kekäläinen ◽  
Jonathan P. Evans

‘Sperm competition’—where ejaculates from two or more males compete for fertilization—and ‘cryptic female choice’—where females bias this contest to suit their reproductive interests—are now part of the everyday lexicon of sexual selection. Yet the physiological processes that underlie these post-ejaculatory episodes of sexual selection remain largely enigmatic. In this review, we focus on a range of post-ejaculatory cellular- and molecular-level processes, known to be fundamental for fertilization across most (if not all) sexually reproducing species, and point to their putative role in facilitating sexual selection at the level of the cells and gametes, called ‘gamete-mediated mate choice’ (GMMC). In this way, we collate accumulated evidence for GMMC across different mating systems, and emphasize the evolutionary significance of such non-random interactions among gametes. Our overall aim in this review is to build a more inclusive view of sexual selection by showing that mate choice often acts in more nuanced ways than has traditionally been assumed. We also aim to bridge the conceptual divide between proximal mechanisms of reproduction, and adaptive explanations for patterns of non-random sperm–egg interactions that are emerging across an increasingly diverse array of taxa.


Sign in / Sign up

Export Citation Format

Share Document