Discrete ambiguity in the nonrelativistic optical potential forC12at 400 MeV and its resolution by spin-rotation data

1985 ◽  
Vol 31 (1) ◽  
pp. 253-256 ◽  
Author(s):  
W. Bauhoff
1999 ◽  
Vol 59 (5) ◽  
pp. 3775-3782 ◽  
Author(s):  
Th. Jestädt ◽  
K. H. Chow ◽  
S. J. Blundell ◽  
W. Hayes ◽  
F. L. Pratt ◽  
...  

2010 ◽  
Vol 25 (21n23) ◽  
pp. 1754-1758
Author(s):  
MASANOBU YAHIRO ◽  
KOSHO MINOMO ◽  
KAZUYUKI OGATA ◽  
YOSHIFUMI R. SHIMIZU ◽  
TAKUMA MATSUMOTO ◽  
...  

This article is composed of three subjects. First, the relation between the method of continuum-discretized coupled channels (CDCC) and the Faddeev theory is clarified to show the validity of CDCC. Second, CDCC is applied to four-body reactions such as (6 He , nn 4 He ) as an example of recent progress in CDCC. Third, we propose a microscopic version of CDCC in which a localized form of the microscopic nucleon-nucleus optical potential is used as an input of CDCC calculation instead of the phenomenological optical potential commonly used. The validity of the Brieva-Rook localization is shown for the proton scattering in a wide incident-energy range.


1989 ◽  
Vol 44 (11) ◽  
pp. 1063-1078 ◽  
Author(s):  
H. Krause ◽  
D. H. Sutter

Abstract The rotational Zeeman effect has been observed in methanimine which was produced from ethylenediamine by flash pyrolysis. The observed vibronic ground state expectation values of the molecular g-values, the magnetic susceptibility anisotropies and the molecular electric quadrupole moments are: gaa = -1.27099(22), gbb= -0.18975(7), gcc= -0.03440(8), 2ξaa-ξbb-ξcc = 12.49(19) · 10-6 ergG-2mol-1, 2ξbb-ξcc-ξaa = 5.22(11) · 10-6 ergG-2 mol-1 Qaa = 0.43(17) · 10-26esu cm2, Qbb= 1.08(10) · 10-26 esu cm2, and Qcc= -1.51 (26) . 10-26 esu cm2. With the TZVP ab initio value for the out-off plane electronic second moment as additional input, reliable values can be given also for the individual components of the magnetic susceptibility tensor and for the bulk susceptibility:ξ = (ξaa + ξbb + ξcc)/3=-13.13(88) · 10-6 erg G -2 mol-1. From low-J a-and b-type zero field transitions the spin-rotation coupling constants and the 14N nuclear quadrupole coupling constants could be redetermined with improved accuracy. These data are compared with our new theoretical results.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2512-2515 ◽  
Author(s):  
HIDEKO NAGAHIRO ◽  
DAISUKE JIDO ◽  
SATORU HIRENZAKI

We investigate the properties of η-nucleus interaction by postulating the N*(1535) dominance for η-N system. We evaluate the N*(1535) properties in the nuclear medium using two kinds of chiral models, and find that these two models provide qualitatively different η-nucleus optical potentials reflecting the quite distinct properties of N*(1535) in these chiral models. Especially, in the chiral doublet model, we can expect to have the level crossing between η and N*(1535)-hole which is expected to provide the characteristic features for the optical potential and the formation spectra. We find also that the difference of these models can be seen in the formation cross sections of the η mesic nuclei with (π+, p ) reaction expected to be performed at J-PARC project.


2012 ◽  
Vol 26 (31) ◽  
pp. 1250210 ◽  
Author(s):  
M. A. GRADO-CAFFARO ◽  
M. GRADO-CAFFARO

The optical potential of an attractive nonrelativistic electron gas interacting with nuclear matter is determined on the basis of the concept of degenerate Fermi gas. In fact, the involved electrons are treated as three-dimensional quantum harmonic oscillators confined at the surface of a spherical (approximately ideal) potential well. Within this picture, the Fermi velocity is calculated as well as the spatial electron density at the surface of the potential well and the attractive force between the electron gas and the nuclear matter. In addition, considerations related to the Lippmann–Schwinger model are made.


Sign in / Sign up

Export Citation Format

Share Document