Is the Earth’s orbital motion linked to the spin rotation of the Sun?

2019 ◽  
Vol 63 (10) ◽  
pp. 3385-3389 ◽  
Author(s):  
V.A. Kotov
Keyword(s):  
2018 ◽  
Vol 615 ◽  
pp. A153 ◽  
Author(s):  
Rodolfo G. Cionco ◽  
Dmitry A. Pavlov

Aims. The barycentric dynamics of the Sun has increasingly been attracting the attention of researchers from several fields, due to the idea that interactions between the Sun’s orbital motion and solar internal functioning could be possible. Existing high-precision ephemerides that have been used for that purpose do not include the effects of trans-Neptunian bodies, which cause a significant offset in the definition of the solar system’s barycentre. In addition, the majority of the dynamical parameters of the solar barycentric orbit are not routinely calculated according to these ephemerides or are not publicly available. Methods. We developed a special version of the IAA RAS lunar–solar–planetary ephemerides, EPM2017H, to cover the whole Holocene and 1 kyr into the future. We studied the basic and derived (e.g., orbital torque) barycentric dynamical quantities of the Sun for that time span. A harmonic analysis (which involves an application of VSOP2013 and TOP2013 planetary theories) was performed on these parameters to obtain a physics-based interpretation of the main periodicities present in the solar barycentric movement. Results. We present a high-precision solar barycentric orbit and derived dynamical parameters (using the solar system’s invariable plane as the reference plane), widely accessible for the whole Holocene and 1 kyr in the future. Several particularities and barycentric phenomena are presented and explained on dynamical bases. A comparison with the Jet Propulsion Laboratory DE431 ephemeris, whose main differences arise from the modelling of trans-Neptunian bodies, shows significant discrepancies in several parameters (i.e., not only limited to angular elements) related to the solar barycentric dynamics. In addition, we identify the main periodicities of the Sun’s barycentric movement and the main giant planets perturbations related to them.


2017 ◽  
Vol 598 ◽  
pp. L7 ◽  
Author(s):  
P. Kervella ◽  
F. Thévenin ◽  
C. Lovis

Proxima and α Centauri AB have almost identical distances and proper motions with respect to the Sun. Although the probability of such similar parameters is, in principle, very low, the question as to whether they actually form a single gravitationally bound triple system has been open since the discovery of Proxima one century ago. Owing to HARPS high-precision absolute radial velocity measurements and the recent revision of the parameters of the α Cen pair, we show that Proxima and α Cen are gravitationally bound with a high degree of confidence. The orbital period of Proxima is ≈ 550 000 yr. With an eccentricity of 0.50+0.08-0.09, Proxima comes within 4.3+1.1-0.9 kau of α Cen at periastron, and is currently close to apastron (13.0+0.3-0.1 kau). This orbital motion may have influenced the formation or evolution of the recently discovered planet orbiting Proxima, as well as circumbinary planet formation around α Cen.


1996 ◽  
Vol 150 ◽  
pp. 361-364
Author(s):  
L. I. Shestakova ◽  
L. V. Tambovtseva

AbstractThe orbital motion of interplanetary dust grains in the sublimation zone near the Sun has been considered for graphite and silicate. Calculations showed that dust grains with initial radii s = 0.5 - 5 μm can form regions of enhanced concentration. The inner corona is slightly enriched with particles s = 0.3 - 0.6 μm due to the departure of the evaporated grains onto highly elliptic orbits. However, they may be not recognized due to their small contribution to the total brightness along the line-of-sight compared with the background of the more typical Zodiacal particles. The astrosilicate dust grains do not form zones of enhanced concentration. Finally, particles with initial radii from 0.3 to 4 μm leave the Solar system and become β-meteoroids.


2020 ◽  
Author(s):  
Zdeněk Němeček ◽  
Tereza Ďurovcová ◽  
Jana Šafránková ◽  
Jiří Šimůnek ◽  
John D. Richardson ◽  
...  

<p>The solar wind aberration due to non-radial velocity components and the Earth orbital motion is important for the overall magnetosphere geometry because the magnetospheric tail is aligned with the solar wind flow. This paper investigates an evolution of non-radial components of the solar wind flow along the path from the Sun to 6 AU. A comparison of observations at 1 AU and closer to or further from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Wind, ACE, Spektr-R, THEMIS B and C, Helios 1 and 2, Mars-Express, Voyager 1 and 2) shows that (i) the average values of non-radial components vary with the distance from the Sun and (ii) they differ according to solar wind streams.</p>


Dr R. R. Newton has notified the following correction to his contribution. The paragraph at the bottom of page 16 and the top of page 17 should read: The node of the lunar orbit rotates in a westerly direction around the plane of the ecliptic, making a complete revolution in about 18.61 years. This motion, and this time interval, are important in eclipse theory, as we shall discuss in the next section. This motion results almost entirely from the perturbation of the Sun’s gravitation on the Moon’s orbital motion. The Earth’s equatorial bulge, which is almost entirely responsible for the motion of the nodes of artificial satellites near the Earth, has only a slight effect on a satellite as distant as the Moon.


2008 ◽  
Vol 25 (2) ◽  
pp. 85-93 ◽  
Author(s):  
I. R. G. Wilson ◽  
B. D. Carter ◽  
I. A. Waite

AbstractWe present evidence to show that changes in the Sun's equatorial rotation rate are synchronized with changes in its orbital motion about the barycentre of the Solar System. We propose that this synchronization is indicative of a spin–orbit coupling mechanism operating between the Jovian planets and the Sun. However, we are unable to suggest a plausible underlying physical cause for the coupling. Some researchers have proposed that it is the period of the meridional flow in the convective zone of the Sun that controls both the duration and strength of the Solar cycle. We postulate that the overall period of the meridional flow is set by the level of disruption to the flow that is caused by changes in Sun's equatorial rotation speed. Based on our claim that changes in the Sun's equatorial rotation rate are synchronized with changes in the Sun's orbital motion about the barycentre, we propose that the mean period for the Sun's meridional flow is set by a Synodic resonance between the flow period (∼22.3 yr), the overall 178.7-yr repetition period for the solar orbital motion, and the 19.86-yr synodic period of Jupiter and Saturn.


1983 ◽  
Vol 74 ◽  
pp. 37-37
Author(s):  
M. Dubois-Moons

AbstractThe paper presents a new theory of the libration of the Moon, completely analytical with respect to the harmonic coefficients of the lunar gravity field. This field is represented through its fourth degree harmonics for the torque due to the Earth (the second degree for the torque due to the Sun). The Moon is assumed to be rigid and its orbital motion is described by the ELP 2000 solution (Chapront and Chapront-Touzé 1981) for the main problem of lunar theory with planetary perturbations and influence of the non-sphericity of the Earth. Comparisons with other theories (Migus 1980 and Eckhardt 1981) are also presented.


Sign in / Sign up

Export Citation Format

Share Document