scholarly journals Ground state energy of spin polarized quark matter with correlation

2009 ◽  
Vol 80 (2) ◽  
Author(s):  
Kausik Pal ◽  
Subhrajyoti Biswas ◽  
Abhee K. Dutt-Mazumder
2008 ◽  
Vol 22 (03) ◽  
pp. 257-266 ◽  
Author(s):  
A. S. SANDOUQA ◽  
B. R. JOUDEH ◽  
M. K. AL-SUGHEIR ◽  
H. B. GHASSIB

Spin-polarized atomic deuterium (↓D) is investigated in the static fluctuation approximation with a Morse-type potential. The thermodynamic properties of the system are computed as functions of temperature. In addition, the ground-state energy per atom is calculated for the three species of ↓D : ↓D 1, ↓D 2, and ↓D 3. This is then compared to the corresponding ground-state energy per atom for the ideal gas, and to that obtained by the perturbation theory of the hard sphere model. It is deduced that ↓D is nearly ideal.


2018 ◽  
Vol 96 (11) ◽  
pp. 1163-1172
Author(s):  
Kausik Pal

The cardinal focus of the present review is to investigate the possibility of the para-ferro phase transition of dense quark matter. For these, the calculation of the single-particle energies, ground state energy (GSE) densities, and spin susceptibility χ of degenerate quark matter with one gluon exchange interaction in terms of spin-dependent Landau parameters (LPs) have been presented. The expressions for the GSE and χ of cold and dense spin-polarized quark matter have been derived with corrections due to correlation. Furthermore, the magnetic properties of spin polarized quark matter have been discussed by evaluating the magnetization ⟨M⟩ and magnetic susceptibility χM in terms of LPs. Finally, the possibility of magnetic instability has been revealed by studying the density dependence of ⟨M⟩ and χM.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Simeon Hellerman ◽  
Nozomu Kobayashi ◽  
Shunsuke Maeda ◽  
Masataka Watanabe

Abstract As a sequel to previous work, we extend the study of the ground state configuration of the D = 3, Wilson-Fisher conformal O(4) model. In this work, we prove that for generic ratios of two charge densities, ρ1/ρ2, the ground-state configuration is inhomogeneous and that the inhomogeneity expresses itself towards longer spatial periods. This is the direct extension of the similar statements we previously made for ρ1/ρ2 ≪ 1. We also compute, at fixed set of charges, ρ1, ρ2, the ground state energy and the two-point function(s) associated with this inhomogeneous configuration on the torus. The ground state energy was found to scale (ρ1 + ρ2)3/2, as dictated by dimensional analysis and similarly to the case of the O(2) model. Unlike the case of the O(2) model, the ground also strongly violates cluster decomposition in the large-volume, fixed-density limit, with a two-point function that is negative definite at antipodal points of the torus at leading order at large charge.


Sign in / Sign up

Export Citation Format

Share Document