scholarly journals Linking number of vortices as baryon number

2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Sven Bjarke Gudnason ◽  
Muneto Nitta
Keyword(s):  
Author(s):  
Steven E. Vigdor

Chapter 4 deals with the stability of the proton, hence of hydrogen, and how to reconcile that stability with the baryon number nonconservation (or baryon conservation) needed to establish a matter–antimatter imbalance in the infant universe. Sakharov’s three conditions for establishing a matter–antimatter imbalance are presented. Grand unified theories and experimental searches for proton decay are described. The concept of spontaneous symmetry breaking is introduced in describing the electroweak phase transition in the infant universe. That transition is treated as the potential site for introducing the imbalance between quarks and antiquarks, via either baryogenesis or leptogenesis models. The up–down quark mass difference is presented as essential for providing the stability of hydrogen and of the deuteron, which serves as a crucial stepping stone in stellar hydrogen-burning reactions that generate the energy and elements needed for life. Constraints on quark masses from lattice QCD calculations and violations of chiral symmetry are discussed.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 203
Author(s):  
Peter Shternin ◽  
Isaac Vidaña

We consider transport properties of the hypernuclear matter in neutron star cores. In particular, we calculate the thermal conductivity, the shear viscosity, and the momentum transfer rates for npΣ−Λeμ composition of dense matter in β–equilibrium for baryon number densities in the range 0.1–1 fm−3. The calculations are based on baryon interactions treated within the framework of the non-relativistic Brueckner-Hartree-Fock theory. Bare nucleon-nucleon (NN) interactions are described by the Argonne v18 phenomenological potential supplemented with the Urbana IX three-nucleon force. Nucleon-hyperon (NY) and hyperon-hyperon (YY) interactions are based on the NSC97e and NSC97a models of the Nijmegen group. We find that the baryon contribution to transport coefficients is dominated by the neutron one as in the case of neutron star cores containing only nucleons. In particular, we find that neutrons dominate the total thermal conductivity over the whole range of densities explored and that, due to the onset of Σ− which leads to the deleptonization of the neutron star core, they dominate also the shear viscosity in the high density region, in contrast with the pure nucleonic case where the lepton contribution is always the dominant one.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Amando Hala

Abstract We estimate the form factors that parametrise the hadronic matrix elements of proton-to-pion transitions with the help of light-cone sum rules. These form factors are relevant for semi-leptonic proton decay channels induced by baryon-number violating dimension-six operators, as typically studied in the context of grand unified theories. We calculate the form factors in a kinematical regime where the momentum transfer from the proton to the pion is space-like and extrapolate our final results to the regime that is relevant for proton decay. In this way, we obtain estimates for the form factors that show agreement with the state-of-the-art calculations in lattice QCD, if systematic uncertainties are taken into account. Our work is a first step towards calculating more involved proton decay channels where lattice QCD results are not available at present.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
D. Sahoo ◽  
G. B. Mohanty ◽  
K. Trabelsi ◽  
I. Adachi ◽  
K. Adamczyk ◽  
...  

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma

Abstract We investigate systematically dimension-9 operators in the standard model effective field theory which contains only standard model fields and respects its gauge symmetry. With the help of the Hilbert series approach to classifying operators according to their lepton and baryon numbers and their field contents, we construct the basis of operators explicitly. We remove redundant operators by employing various kinematic and algebraic relations including integration by parts, equations of motion, Schouten identities, Dirac matrix and Fierz identities, and Bianchi identities. We confirm counting of independent operators by analyzing their flavor symmetry relations. All operators violate lepton or baryon number or both, and are thus non-Hermitian. Including Hermitian conjugated operators there are $$ {\left.384\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.10\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.4\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.236\right|}_{\Delta B=\pm 1}^{\Delta L=\mp 1} $$ 384 Δ B = 0 Δ L = ± 2 + 10 Δ B = ± 2 Δ L = 0 + 4 Δ B = ± 1 Δ L = ± 3 + 236 Δ B = ± 1 Δ L = ∓ 1 operators without referring to fermion generations, and $$ {\left.44874\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.2862\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.486\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.42234\right|}_{\Delta B=\mp 1}^{\Delta L=\pm 1} $$ 44874 Δ B = 0 Δ L = ± 2 + 2862 Δ B = ± 2 Δ L = 0 + 486 Δ B = ± 1 Δ L = ± 3 + 42234 Δ B = ∓ 1 Δ L = ± 1 operators when three generations of fermions are referred to, where ∆L, ∆B denote the net lepton and baryon numbers of the operators. Our result provides a starting point for consistent phenomenological studies associated with dimension-9 operators.


Proceedings ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Saumen Datta ◽  
Rajiv Gavai ◽  
Sourendu Gupta

One of the main goals of the cold baryonic matter (CBM) experiment at FAIR is to explore the phases of strongly interacting matter at finite temperature and baryon chemical potential μ B . The equation of state of quantum chromodynamics (QCD) at μ B > 0 is an essential input for the CBM experiment, as well as for the beam energy scan in the Relativistic Heavy Ion Collider(RHIC) experiment. Unfortunately, it is highly nontrivial to calculate the equation of state directly from QCD: numerical Monte Carlo studies on lattice are not useful at finite μ B . Using the method of Taylor expansion in chemical potential, we estimate the equation of state, namely the baryon number density and its contribution to the pressure, for two-flavor QCD at moderate μ B . We also study the quark number susceptibilities. We examine the technicalities associated with summing the Taylor series, and explore a Pade resummation. An examination of the Taylor series can be used to get an estimate of the location of the critical point in μ B , T plane.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450013 ◽  
Author(s):  
Shiwu Chen ◽  
Qin Li ◽  
Jianfeng Xu ◽  
Li Gao ◽  
Chengjun Xia

We investigate the properties of strangelets at zero temperature with a new quark model in which the linear confinement and one-gluon-exchange (OGE) interactions are integrated as a whole. The charge, parameters dependence and the stability of strangelets are discussed. Our results showed that the OGE interaction lowers the energy of a strangelet, and consequently makes its stable radius smaller than that in the case of not including this interaction, and less than that of a nucleus with the same baryon number. Therefore, the strangelet in the present model has more chance to be absolutely stable.


Sign in / Sign up

Export Citation Format

Share Document