scholarly journals Probing gaseous galactic halos through the rotational kinematic Sunyaev-Zeldovich effect

2020 ◽  
Vol 101 (8) ◽  
Author(s):  
José Manuel Zorrilla Matilla ◽  
Zoltán Haiman
Keyword(s):  
1980 ◽  
Vol 92 ◽  
pp. 107-117 ◽  
Author(s):  
Ray J. Weymann

A classification scheme for QSO absorption line spectra is described which ascribes the origin of the lines to at least four mechanisms: (A) Explosive ejection of material at speeds up to 0.1 c. (B) Absorption by highly ionized material moving in a rich cluster in which the QSO is embedded. (C-1) Cosmologically distant intervening material with ‘normal’ abundances, probably associated with large galactic halos. (C-2) Cosmologically distant intervening material consisting of primordial uncondensed gas. Examples of each type of spectra are given and their ionization and other spectral characteristics discussed. The similarity between the development of novae spectra and a possible evolutionary sequence of the explosive ejecta of type A is striking and suggestive. Several difficulties and unsolved problems involving this scheme are noted. Finally, we speculate on the interpretation of two interesting objects (PKS 0237-23 and the ‘twin quasars’ 0957+56A,B) in the context of this scheme.


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 77
Author(s):  
Anne M. Hofmeister

To explain rotation curves of spiral galaxies through Newtonian orbital models, massive halos of non-baryonic dark matter (NBDM) are commonly invoked. The postulated properties are that NBDM interacts gravitationally with baryonic matter, yet negligibly interacts with photons. Since halos are large, low-density gaseous bodies, their postulated attributes can be tested against classical thermodynamics and the kinetic theory of gas. Macroscopic models are appropriate because these make few assumptions. NBDM–NBDM collisions must be elastic to avoid the generation of light, but this does not permit halo gas temperature to evolve. If no such collisions exist, then the impossible limit of absolute zero would be attainable since the other available energy source, radiation, does not provide energy to NBDM. The alternative possibility, an undefined temperature, is also inconsistent with basic thermodynamic principles. However, a definable temperature could be attained via collisions with baryons in the intergalactic medium since these deliver kinetic energy to NBDM. In this case, light would be produced since some proportion of baryon collisions are inelastic, thereby rendering the halo detectable. Collisions with baryons are unavoidable, even if NBDM particles are essentially point masses. Note that <0.0001 × the size of a proton is needed to avoid scattering with γ-rays, the shortest wavelength used to study halos. If only elastic collisions exist, NBDM gas would collapse to a tiny, dense volume (zero volume for point masses) during a disturbance—e.g., cosmic rays. NBDM gas should occupy central galactic regions, not halos, since self-gravitating objects are density stratified. In summary, properties of NBDM halos as postulated would result in violations of thermodynamic laws and in a universe unlike that observed.


1988 ◽  
Vol 130 ◽  
pp. 259-271
Author(s):  
Carlos S. Frenk

Modern N-body techniques allow the study of galaxy formation in the wider context of the formation of large-scale structure in the Universe. The results of such a study within the cold dark matter cosmogony are described. Dark galactic halos form at relatively recent epochs. Their properties and abundance are similar to those inferred for the halos of real galaxies. Massive halos tend to form preferentially in high density regions and as a result the galaxies that form within them are significantly more clustered than the underlying mass. This natural bias may be strong enough to reconcile the observed clustering of galaxies with the assumption that Ω = 1.


1993 ◽  
Vol 157 ◽  
pp. 415-419
Author(s):  
D. Breitschwerdt ◽  
H.J. Völk ◽  
V. Ptuskin ◽  
V. Zirakashvili

It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.


1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


Sign in / Sign up

Export Citation Format

Share Document