Evolution of radio jets in galactic halos and the intergalactic medium

Author(s):  
Paul J. Wiita ◽  
Gopal-Krishna
Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 36 ◽  
Author(s):  
David Moss ◽  
Dmitry Sokoloff

Magnetic fields in the discs of spiral galaxies are quite well understood, although, of course, many details still require investigation and future observations with new generations of radio telescopes will be valuable here. Magnetic configurations around galactic discs and, in particular, the magnetic field components perpendicular to galactic discs seem to be much more poorly understood and deserve further investigation both observationally and by modelling. Another problem to be addressed in future investigations is the magnetic configuration in galactic halos and, in particular, interactions with the intergalactic medium and various winds. Finally, the importance of the observational determination of such drivers of galactic dynamo action as mirror asymmetry of the turbulent galactic flows are briefly discussed.


1996 ◽  
Vol 175 ◽  
pp. 71-72
Author(s):  
F. Mantovani ◽  
W. Junor ◽  
M. Bondi ◽  
L. Padrielli ◽  
W. Cotton ◽  
...  

Recently we focussed our attention on a sample of Compact Steep-spectrum Sources (CSSs) selected because of the large bent radio jets seen in the inner region of emission. The largest distortions are often seen in sources dominated by jets, and there are suggestions that this might to some extent be due to projection effects. However, superluminal motion is rare in CSSs. The only case we know of so far is 3C147 (Alef at al. 1990) with a mildly superluminal speed of ≃ 1.3v/c. Moreover, the core fractional luminosity in CSSs is ≃ 3% and ≤ 0.4% for quasars and radio galaxies respectively. Similar values are found for large size radio sources i.e. both boosting and orientations in the sky are similar for the two classes of objects. An alternative possibility is that these bent-jet sources might also be brightened by interactions with the ambient media. There are clear indications that intrinsic distortions due to interactions with a dense inhomogeneous gaseous environment play an important role. Observational support comes from the large RMs found in CSSs (Taylor et al. 1992; Mantovani et al. 1994; Junor et al. these proc.) and often associated with strong depolarization (Garrington & Akujor, t.p.). The CSSs also have very luminous Narrow Line Regions emission, with exceptional velocity structure (Gelderman, t.p.).


1998 ◽  
Vol 11 (1) ◽  
pp. 141-144
Author(s):  
P.-A. Duc ◽  
I.F. Mirabel ◽  
E. Brinks

The life and evolution of galaxies are dramatically affected by environmental effects. Interactions with the intergalactic medium and collisions with companions cause major perturbations in the morphology and contents of galaxies: in particular stars and gas clouds may be gravitationally pulled out from their parent galaxies during tidal encounters, forming rings, tails and bridges. This debris of collisions lies at the origin of a new generation of small galaxies, the so-called “tidal dwarf galaxies” (hereafter TDGs). Such an exotic way of forming galaxies was put forward by Schweizer (1978) and by Mirabel et al. (1992), who clearly observed the genesis of a star-forming object, out of material tidally expelled from the interacting system NGC 4038/39 (“The Antennae”). Recent studies, based on optical and HI observations, have shown that TDGs actually form a class of “recycled” objects with some properties similar to the more classical dwarf irregulars (dIrr) and blue compact dwarf galaxies (BCDs).


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


2021 ◽  
Author(s):  
Michael Janssen ◽  
Heino Falcke ◽  
Matthias Kadler ◽  
Eduardo Ros ◽  
Maciek Wielgus ◽  
...  

AbstractVery-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.


1999 ◽  
Vol 16 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Michael Shull ◽  
Steven V. Penton ◽  
John T. Stocke

AbstractThe low-redshift Lyα forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our recent Hubble Space Telescope (HST) observations and interpretation of low-z Lyα clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Ωb. Our HST/GHRS detections of ∼ 70 Lyα absorbers with Nhi ≥ 1012·6 cm−2 along 11 sightlines covering pathlength Δ(cz) = 114,000 km s−1 show f (>Nhi) α Nhi−0·63±0·04 and a line frequency dN/dz = 200 ± 40 for Nhi > 1012·6 cm−2 (one every 1500 km s−1 of redshift). A group of strong absorbers toward PKS 2155–304 may be associated with gas (400–800) kpc from four large galaxies, with low metallicity (≤0·003 solar) and D/H ≤ 2 × 10−4. At low-z, we derive a metagalactic ionising radiation field from AGN of J0 = × 10−23 erg cm−2 s−1 Hz−1 sr−1 and a Lyα-forest baryon density Ωb =(0·008 ± 0·004)[J−23N14b100]½ for clouds of characteristic size b = (100 kpc)b100.


2000 ◽  
Vol 195 ◽  
pp. 439-441
Author(s):  
D.-Y. Wang ◽  
Y. Ma

Relativistic electrons may be effectively accelerated by turbulent Alfvén waves in radio jets. The acceleration spectrum is a power law with the electron energy as high as γ ~ 106, but the spectrum index is ~ 1.2 in the condition of diffusion approximation, which is less than the observation value.


2017 ◽  
Vol 845 (1) ◽  
pp. 47 ◽  
Author(s):  
Stephanie Tonnesen ◽  
Britton D. Smith ◽  
Juna A. Kollmeier ◽  
Renyue Cen

Sign in / Sign up

Export Citation Format

Share Document