scholarly journals Evaluating the merger rate of binary black holes from direct captures and third-body soft interactions using the Milky Way globular clusters

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
Konstantinos Kritos ◽  
Ilias Cholis
2020 ◽  
Vol 495 (4) ◽  
pp. 4268-4278 ◽  
Author(s):  
Jun Kumamoto ◽  
Michiko S Fujii ◽  
Ataru Tanikawa

ABSTRACT Several binary black holes (BBHs) have been observed using gravitational wave detectors. For the formation mechanism of BBHs, two main mechanisms, isolated binary evolution and dynamical formation in dense star clusters, have been suggested. Future observations are expected to provide more information about BBH distributions, and it will help us to distinguish the two formation mechanisms. For the star cluster channel, globular clusters have mainly been investigated. However, recent simulations have suggested that BBH formation in open clusters is not negligible. We estimate a local merger rate density of BBHs originated from open clusters using the results of our N-body simulations of open clusters with four different metallicities. We find that the merger rate per cluster is the highest for our 0.1 solar metallicity model. Assuming a cosmic star formation history and a metallicity evolution with dispersion, we estimate the local merger rate density of BBHs originated from open clusters to be ∼70 yr−1 Gpc−3. This value is comparable to the merger rate density expected from the first and second observation runs of LIGO and Virgo. In addition, we find that BBH mergers obtained from our simulations can reproduce the distribution of primary mass and mass ratio of merging BBHs estimated from the LIGO and Virgo observations.


2016 ◽  
Vol 12 (S329) ◽  
pp. 118-125 ◽  
Author(s):  
Konstantin Postnov ◽  
Alexander Kuranov

AbstractPossible formation mechanisms of massive close binary black holes that can merge in the Hubble time to produce powerful gravitational wave bursts detected during advanced LIGO O1 science run are briefly discussed. The pathways include the evolution from field low-metallicity massive binaries, the dynamical formation in globular clusters and primordial black holes. Low effective black hole spins inferred for LIGO GW150914 and LTV151012 events are discussed. Population synthesis calculations of the expected spin and chirp mass distributions from the standard field massive binary formation channel are presented for different metallicities (from zero-metal Population III stars up to solar metal abundance). We conclude that that merging binary black holes can contain systems from different formation channels, discrimination between which can be made with increasing statistics of mass and spin measurements from ongoing and future gravitational wave observations.


Author(s):  
Ju Chen ◽  
Changshuo Yan ◽  
Youjun Lu ◽  
Yuetong Zhao ◽  
Junqiang Ge

Abstract Gravitational wave (GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if its redshift can be measured independently by electromagnetic signals. However, mergers of stellar binary black holes (BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements. These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it. We investigate this dark siren method to constrain cosmological parameters in details by using mock BBH and galaxy samples. We find that the Hubble constant can be well constrained with an accuracy $\lesssim 1\%$ with a few tens or more BBH mergers at redshift up to $1$ if GW observations can provide accurate estimates of its luminosity distance (with relative error of $\lesssim 0.01$) and localization ($\lesssim 0.1\mathrm{deg}^2$), though the constraint may be significantly biased if the luminosity distance and localization errors are larger. We further generate mock BBH samples, according to current constraints on BBH merger rate and the distributions of BBH properties, and find that Deci-Hertz Observatory (DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio $\varrho \gtrsim 30$, relative luminosity distance error $\lesssim 0.02$, and localization error $\lesssim 0.01\mathrm{deg}^2$. By applying the dark standard siren method, we find that the Hubble constant can be constrained to $\sim 0.1-1\%$ level using these DO BBHs, an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future, thus it may provide insight into the Hubble tension. We also demonstrate that the constraint on the Hubble constant using this dark siren method are robust and do not depend on the choice of the prior for the properties of BBH host galaxies.


2019 ◽  
Vol 629 ◽  
pp. A44 ◽  
Author(s):  
Mariya Lyubenova ◽  
Athanassia Tsatsi

Context. Nucleation is a common phenomenon in all types of galaxies and at least 70% of them host nuclear star clusters (NSCs) in their centres. Many of the NSCs co-habit with supermassive black holes and follow similar scaling relations with host galaxy properties. Unlike black holes, NSCs, preserve the signature of their evolutionary path imprinted onto their kinematics and stellar populations. Thus their study provides us with important information about the formation of galactic nuclei. Aims. In this paper we explored the angular momentum of the nuclei of six intermediate mass (9.7 >  log(Mdyn/M⊙) > 10.6) early-type galaxies that host NSCs and are located in the Fornax cluster. Our goal was to derive a link between the nuclear angular momentum and the proposed formation scenarios of NSCs. Methods. We used adaptive optics assisted IFU observations with VLT/SINFONI to derive the spatially resolved stellar kinematics of the galaxy nuclei. We measured their specific stellar angular momenta λRe, and compared these with Milky Way globular clusters (GCs) and N-body simulations of NSC formation. Results. We found that all studied nuclei exhibit varied stellar kinematics. Their λRe and ellipticities are similar to Milky Way GCs. Five out of six galaxy nuclei are consistent with the λRe − ϵe of simulated NSCs embedded in a contaminating nuclear bulge that have formed via the in-spiralling and merging of GCs. Conclusion. It has previously been suggested that the NSCs in higher mass galaxies, such as those studied in this paper, form via dissipational sinking of gas onto the galactic nuclei with hints that some might also involve the merger of GCs. In this work we show that we cannot exclude the pure GC merging scenario as a viable path for the formation of NSCs.


2019 ◽  
Vol 14 (S351) ◽  
pp. 204-207
Author(s):  
Jun Kumamoto ◽  
Michiko S. Fujii ◽  
Ataru Tanikawa

AbstractGravitational wave direct detections suggest that 30 M⊙ binary black holes (BBHs) commonly exist in the universe. One possible formation scenario of such BBHs is dynamical three-body encounters in dense star clusters. We performed a series of direct N-body simulations with a mass of 2500 and 10000 M⊙ and found a new channel for the formation of BBHs which is dominant in open clusters. In open clusters, the core-collapse time is shorter than in globular clusters, and therefore massive main-sequence (MS) binaries can form before they evolve to BHs. These MS binaries experience common envelope evolution and evolve to hard BBHs, which can merge within the Hubble time. The number of BBH mergers per unit mass obtained from our simulations reached 20–50 % of that for globular clusters, assuming an initial cluster mass function. Thus, open clusters can be a dominant formation site of hard BBHs.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2020 ◽  
Vol 498 (1) ◽  
pp. 495-506 ◽  
Author(s):  
Ugo N Di Carlo ◽  
Michela Mapelli ◽  
Nicola Giacobbo ◽  
Mario Spera ◽  
Yann Bouffanais ◽  
...  

ABSTRACT Young star clusters are the most common birthplace of massive stars and are dynamically active environments. Here, we study the formation of black holes (BHs) and binary black holes (BBHs) in young star clusters, by means of 6000 N-body simulations coupled with binary population synthesis. We probe three different stellar metallicities (Z = 0.02, 0.002, and 0.0002) and two initial-density regimes (density at the half-mass radius ρh ≥ 3.4 × 104 and ≥1.5 × 102 M⊙ pc−3 in dense and loose star clusters, respectively). Metal-poor clusters tend to form more massive BHs than metal-rich ones. We find ∼6, ∼2, and <1 per cent of BHs with mass mBH > 60 M⊙ at Z = 0.0002, 0.002, and 0.02, respectively. In metal-poor clusters, we form intermediate-mass BHs with mass up to ∼320 M⊙. BBH mergers born via dynamical exchanges (exchanged BBHs) can be more massive than BBH mergers formed from binary evolution: the former (latter) reach total mass up to ∼140 M⊙ (∼80 M⊙). The most massive BBH merger in our simulations has primary mass ∼88 M⊙, inside the pair-instability mass gap, and a mass ratio of ∼0.5. Only BBHs born in young star clusters from metal-poor progenitors can match the masses of GW 170729, the most massive event in first and second observing run (O1 and O2), and those of GW 190412, the first unequal-mass merger. We estimate a local BBH merger rate density ∼110 and ∼55 Gpc−3 yr−1, if we assume that all stars form in loose and dense star clusters, respectively.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


2021 ◽  
Vol 21 (11) ◽  
pp. 285
Author(s):  
Ju Chen ◽  
Chang-Shuo Yan ◽  
You-Jun Lu ◽  
Yue-Tong Zhao ◽  
Jun-Qiang Ge

Abstract The detection of gravitational waves (GWs) by ground-based laser interferometer GW observatories (LIGO/Virgo) reveals a population of stellar binary black holes (sBBHs) with (total) masses up to ∼ 150M ⊙, which are potential sources for space-based GW detectors, such as LISA and Taiji. In this paper, we investigate in details on the possibility of detecting sBBHs by the LISA-Taiji network in future. We adopt the sBBH merger rate density constrained by LIGO/VIRGO observations to randomly generate mock sBBHs samples. Assuming an observation period of 4 years, we find that the LISA-Taiji network may detect several tens (or at least several) sBBHs with signal-to-noise ratio (SNR) > 8 (or > 15), a factor 2 − 3 times larger than that by only using LISA or Taiji observations. Among these sBBHs, no more than a few that can merge during the 4-year observation period. If extending the observation period to 10 years, then the LISA-Taiji network may detect about one hundred (or twenty) sBBHs with SNR> 8 (or > 15), among them about twenty (or at least several) can merge within the observation period. Our results suggest that the LISA-Taiji network may be able to detect at least a handful to twenty or more sBBHs even if assuming a conservative SNR threshold (15) for “detection”, which enables multi-band GW observations by space and ground-based GW detectors. We also further estimate the uncertainties in the parameter estimations of the sBBH systems “detected” by the LISA-Taiji network. We find that the relative errors in the luminosity distance measurements and sky localization are mostly in the range of 0.05 − 0.2 and 1 − 100deg2, respectively, for these sBBHs.


Sign in / Sign up

Export Citation Format

Share Document