scholarly journals On detecting stellar binary black holes via the LISA-Taiji network

2021 ◽  
Vol 21 (11) ◽  
pp. 285
Author(s):  
Ju Chen ◽  
Chang-Shuo Yan ◽  
You-Jun Lu ◽  
Yue-Tong Zhao ◽  
Jun-Qiang Ge

Abstract The detection of gravitational waves (GWs) by ground-based laser interferometer GW observatories (LIGO/Virgo) reveals a population of stellar binary black holes (sBBHs) with (total) masses up to ∼ 150M ⊙, which are potential sources for space-based GW detectors, such as LISA and Taiji. In this paper, we investigate in details on the possibility of detecting sBBHs by the LISA-Taiji network in future. We adopt the sBBH merger rate density constrained by LIGO/VIRGO observations to randomly generate mock sBBHs samples. Assuming an observation period of 4 years, we find that the LISA-Taiji network may detect several tens (or at least several) sBBHs with signal-to-noise ratio (SNR) > 8 (or > 15), a factor 2 − 3 times larger than that by only using LISA or Taiji observations. Among these sBBHs, no more than a few that can merge during the 4-year observation period. If extending the observation period to 10 years, then the LISA-Taiji network may detect about one hundred (or twenty) sBBHs with SNR> 8 (or > 15), among them about twenty (or at least several) can merge within the observation period. Our results suggest that the LISA-Taiji network may be able to detect at least a handful to twenty or more sBBHs even if assuming a conservative SNR threshold (15) for “detection”, which enables multi-band GW observations by space and ground-based GW detectors. We also further estimate the uncertainties in the parameter estimations of the sBBH systems “detected” by the LISA-Taiji network. We find that the relative errors in the luminosity distance measurements and sky localization are mostly in the range of 0.05 − 0.2 and 1 − 100deg2, respectively, for these sBBHs.

Author(s):  
Ju Chen ◽  
Changshuo Yan ◽  
Youjun Lu ◽  
Yuetong Zhao ◽  
Junqiang Ge

Abstract Gravitational wave (GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if its redshift can be measured independently by electromagnetic signals. However, mergers of stellar binary black holes (BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements. These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it. We investigate this dark siren method to constrain cosmological parameters in details by using mock BBH and galaxy samples. We find that the Hubble constant can be well constrained with an accuracy $\lesssim 1\%$ with a few tens or more BBH mergers at redshift up to $1$ if GW observations can provide accurate estimates of its luminosity distance (with relative error of $\lesssim 0.01$) and localization ($\lesssim 0.1\mathrm{deg}^2$), though the constraint may be significantly biased if the luminosity distance and localization errors are larger. We further generate mock BBH samples, according to current constraints on BBH merger rate and the distributions of BBH properties, and find that Deci-Hertz Observatory (DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio $\varrho \gtrsim 30$, relative luminosity distance error $\lesssim 0.02$, and localization error $\lesssim 0.01\mathrm{deg}^2$. By applying the dark standard siren method, we find that the Hubble constant can be constrained to $\sim 0.1-1\%$ level using these DO BBHs, an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future, thus it may provide insight into the Hubble tension. We also demonstrate that the constraint on the Hubble constant using this dark siren method are robust and do not depend on the choice of the prior for the properties of BBH host galaxies.


2020 ◽  
Vol 496 (1) ◽  
pp. 523-531
Author(s):  
Shilpa Kastha ◽  
M Saleem ◽  
K G Arun

ABSTRACT Proposed third-generation gravitational wave interferometers such as Cosmic Explorer (CE) will have the sensitivity to observe double neutron star mergers (DNS) up to a redshift of ∼5 with good signal-to-noise ratios (SNRs). We argue that the comoving spatial distribution of DNS mergers leaves a unique imprint on the statistical distribution of SNRs of the detected DNS mergers. Hence, the SNR distribution of DNS mergers will facilitate a novel probe of their redshift evolution independent of the luminosity distance measurements. We consider detections of DNS mergers by the CE and study the SNR distribution for different possible redshift evolution models of DNSs and employ Anderson Darling p-value statistic to demonstrate the distinguishability between these different models. We find that a few hundreds of DNS mergers in the CE era will allow us to distinguish between different models of redshift evolution. We further apply the method for various SNR distributions arising due to different merger delay-time and star formation rate (SFR) models and show that for a given SFR model, the SNR distributions are sensitive to the delay-time distributions. Finally, we investigate the effects of sub-threshold events in distinguishing between different merger rate distribution models.


2021 ◽  
Vol 923 (2) ◽  
pp. 139
Author(s):  
Fupeng Zhang ◽  
Xian Chen ◽  
Lijing Shao ◽  
Kohei Inayoshi

Abstract We study the stellar binary black holes (BBHs) inspiraling/merging in galactic nuclei based on our numerical method GNC. We find that 3%–40% of all newborn BBHs will finally merge due to various dynamical effects. In a five-year mission, up to 104, 105, and ∼100 of BBHs inspiraling/merging in galactic nuclei can be detected with signal-to-noise ration >8 in Advanced LIGO (aLIGO), Einstein/DECIGO, and TianQin/LISA/TaiJi, respectively. Roughly tens are detectable in both LISA/TaiJi/TianQin and aLIGO. These BBHs have two unique characteristics. (1) Significant eccentricities: 1%–3%, 2%–7%, or 30%–90% of them have e i > 0.1 when they enter into aLIGO, Einstein, or space observatories, respectively. Such high eccentricities provide a possible explanation for that of GW190521. Most highly eccentric BBHs are not detectable in LISA/Tianqin/TaiJi before entering into aLIGO/Einstein, as their strain becomes significant only at f GW ≳ 0.1 Hz. DECIGO becomes an ideal observatory to detect those events, as it can fully cover the rising phase. (2) Up to 2% of BBHs can inspiral/merge at distances ≲103 r SW from the massive black hole, with significant accelerations, such that the Doppler phase drift of ∼10–105 of them can be detected with signal-to-noise ratio >8 in space observatories. The energy density of the gravitational-wave backgrounds (GWBs) contributed by these BBHs deviates from the power-law slope of 2/3 at f GW ≲ 1 mHz. The high eccentricity, significant accelerations, and the different profile of the GWB of these sources make them distinguishable, and thus interesting for future gravitational-wave detections and tests of relativities.


2020 ◽  
Vol 498 (1) ◽  
pp. 495-506 ◽  
Author(s):  
Ugo N Di Carlo ◽  
Michela Mapelli ◽  
Nicola Giacobbo ◽  
Mario Spera ◽  
Yann Bouffanais ◽  
...  

ABSTRACT Young star clusters are the most common birthplace of massive stars and are dynamically active environments. Here, we study the formation of black holes (BHs) and binary black holes (BBHs) in young star clusters, by means of 6000 N-body simulations coupled with binary population synthesis. We probe three different stellar metallicities (Z = 0.02, 0.002, and 0.0002) and two initial-density regimes (density at the half-mass radius ρh ≥ 3.4 × 104 and ≥1.5 × 102 M⊙ pc−3 in dense and loose star clusters, respectively). Metal-poor clusters tend to form more massive BHs than metal-rich ones. We find ∼6, ∼2, and <1 per cent of BHs with mass mBH > 60 M⊙ at Z = 0.0002, 0.002, and 0.02, respectively. In metal-poor clusters, we form intermediate-mass BHs with mass up to ∼320 M⊙. BBH mergers born via dynamical exchanges (exchanged BBHs) can be more massive than BBH mergers formed from binary evolution: the former (latter) reach total mass up to ∼140 M⊙ (∼80 M⊙). The most massive BBH merger in our simulations has primary mass ∼88 M⊙, inside the pair-instability mass gap, and a mass ratio of ∼0.5. Only BBHs born in young star clusters from metal-poor progenitors can match the masses of GW 170729, the most massive event in first and second observing run (O1 and O2), and those of GW 190412, the first unequal-mass merger. We estimate a local BBH merger rate density ∼110 and ∼55 Gpc−3 yr−1, if we assume that all stars form in loose and dense star clusters, respectively.


2020 ◽  
Vol 495 (1) ◽  
pp. 466-478 ◽  
Author(s):  
Shichao Wu ◽  
Zhoujian Cao ◽  
Zong-Hong Zhu

ABSTRACT In this article, we estimate the eccentricity of 10 binary black holes (BBHs) in the Gravitational-Wave Transient Catalog GWTC-1 by using the inspiral-only BBH waveform template EccentricFD. First, we test our method with simulated eccentric BBHs. Afterwards we apply the method to real BBH gravitational-wave data. We find that the BBHs in GWTC-1, with the exception of GW151226, GW170608 and GW170729, show very small eccentricity. Their upper limits on eccentricity range from 0.033–0.084 with 90 per cent credible interval at a reference frequency of 10 Hz. For GW151226, GW170608 and GW170729, the upper limits are higher than 0.1. The relatively large eccentricity of GW151226 and GW170729 is probably due to ignoring χeff and the low signal-to-noise ratio, and GW170608 is worthy of follow-up research. We also point out the limitations of the inspiral-only non-spinning waveform template in eccentricity measurement. Measurement of BBH eccentricity helps us to understand its formation mechanism. With an increase in the number of BBH gravitational-wave events and a more complete eccentric BBH waveform template, this will become a viable method in the near future.


2011 ◽  
Vol 20 (12) ◽  
pp. 2399-2417 ◽  
Author(s):  
CH. FILLOUX ◽  
J. A. DE FREITAS PACHECO ◽  
F. DURIER ◽  
J. C. N. DE ARAUJO

The coalescence history of massive black holes has been derived from cosmological simulations, in which the evolution of those objects and that of the host galaxies are followed in a consistent way. The present study indicates that supermassive black holes having masses greater than ~ 109 M⊙ underwent up to 500 merger events along their history. The derived coalescence rate per comoving volume and per mass interval permitted to obtain an estimate of the expected detection rate distribution of gravitational wave signals ("ring-down") along frequencies accessible by the planned interferometers either in space (LISA) or in the ground (Einstein). For LISA, in its original configuration, a total detection rate of about 15 yr-1 is predicted for events having a signal-to-noise ratio equal to 10, expected to occur mainly in the frequency range 4–9 mHz. For the Einstein gravitational wave telescope, one event each 14 months down to one event each four years is expected with a signal-to-noise ratio of 5, occurring mainly in the frequency interval 10–20 Hz. The detection of these gravitational signals and their distribution in frequency would be in the future an important tool able to discriminate among different scenarios explaining the origin of supermassive black holes.


2020 ◽  
Vol 498 (3) ◽  
pp. 3946-3963 ◽  
Author(s):  
Tomoya Kinugawa ◽  
Takashi Nakamura ◽  
Hiroyuki Nakano

ABSTRACT We performed Population III (Pop III) binary evolution using population synthesis simulations for seven different models. We found that Pop III binaries tend to be binary black holes (BBHs) with chirp mass Mchirp ∼ 30 M⊙ and they can merge in the present day, due to a long merger time. The merger rate densities of Pop III BBHs at z = 0 are in the range 3.34–21.2 $\rm yr^{-1}\,Gpc^{-3}$ which is consistent with the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO)/Advanced Virgo (aVIRGO) result of 9.7–101 $\rm yr^{-1}\,Gpc^{-3}$. These Pop III binaries might contribute some portion of the massive BBH gravitational wave (GW) sources detected by aLIGO/aVIRGO. We also calculated the redshift dependence of Pop III BBH mergers. We found that Pop III low-spin BBHs tend to merge at low redshift, while Pop III high-spin BBHs merge at high redshift, which can be confirmed by future GW detectors such as Einstein Telescope (ET), Cosmic Explorer (CE), and DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). These detectors can also check the redshift dependence of the BBH merger rate and spin distribution. Our results show that, except for one model, the mean effective spin 〈χeff〉 at z = 0 lies in the range 0.02–0.3, while at z = 10 it is 0.16–0.64. Therefore, massive stellar-mass BBH detection by GWs will be key for stellar evolution study in the early Universe.


2020 ◽  
Vol 495 (4) ◽  
pp. 4268-4278 ◽  
Author(s):  
Jun Kumamoto ◽  
Michiko S Fujii ◽  
Ataru Tanikawa

ABSTRACT Several binary black holes (BBHs) have been observed using gravitational wave detectors. For the formation mechanism of BBHs, two main mechanisms, isolated binary evolution and dynamical formation in dense star clusters, have been suggested. Future observations are expected to provide more information about BBH distributions, and it will help us to distinguish the two formation mechanisms. For the star cluster channel, globular clusters have mainly been investigated. However, recent simulations have suggested that BBH formation in open clusters is not negligible. We estimate a local merger rate density of BBHs originated from open clusters using the results of our N-body simulations of open clusters with four different metallicities. We find that the merger rate per cluster is the highest for our 0.1 solar metallicity model. Assuming a cosmic star formation history and a metallicity evolution with dispersion, we estimate the local merger rate density of BBHs originated from open clusters to be ∼70 yr−1 Gpc−3. This value is comparable to the merger rate density expected from the first and second observation runs of LIGO and Virgo. In addition, we find that BBH mergers obtained from our simulations can reproduce the distribution of primary mass and mass ratio of merging BBHs estimated from the LIGO and Virgo observations.


2021 ◽  
Vol 59 (9) ◽  
pp. 2133-2178 ◽  
Author(s):  
Dževad Belkić ◽  
Karen Belkić

AbstractThe theme of this study is derivative nuclear magnetic resonance (dNMR) spectroscopy. This versatile methodology of peering into the molecular structure of general matter is common to e.g. analytical chemistry and medical diagnostics. Theoretically, the potential of dNMR is huge and the art is putting it into practice. The implementation of dNMR (be it in vitro or in vivo) is wholly dependent on the manner in which the encoded time signals are analyzed. These acquired data contain the entire information which is, however, opaque in the original time domain. Their frequency-dependent dual representation, a spectrum, can be transparent, provided that the appropriate signal processors are used. In signal processing, there are shape and parameter estimators. The former processors are qualitative as they predict only the forms of the lineshape profiles of spectra. The latter processors are quantitative because they can give the peak parameters (positions, widths, heights, phases). Both estimators can produce total shape spectra or envelopes. Additionally, parameter estimators can yield the component spectra, based on the reconstructed peak quantifiers. In principle, only parameter estimators can solve the quantification problem (harmonic inversion) to determine the structure of the time signal and, hence, the quantitative content of the investigated matter. The derivative fast Fourier transform (dFFT) and the derivative fast Padé transform (dFPT) are the two obvious candidates to employ for dNMR spectroscopy. To make fair comparisons between the dFFT and dFPT, the latter should also be applied as a shape estimator. This is what is done in the present study, using the time signals encoded from a patient with brain tumor (glioma) using a 1.5T clinical scanner. Moreover, within the dFPT itself, the shape estimations are compared to the parameter estimations. The goal of these testings is to see whether, for in vivo dNMR spectroscopy, shape estimations by the dFPT could quantify (without fitting), similarly to parameter estimations. We check this key point in two successive steps. First, we compare the envelopes from the shape and parameter estimations in the dFPT. The second comparison is between the envelopes and components from the shape and parameter estimations, respectively, in the dFPT. This plan for benchmarking shape estimations by the dFPT is challenging both on the level of data acquisition and data analysis. The data acquisition reported here provides encoded time signals of short length, only 512 as compared to 2048, which is customarily employed. Moreover, the encoding echo time was long (272 ms) at which most of resonances assigned to metabolites with shorter spin-spin relaxations are likely to be obliterated from the frequency spectra. Yet, in face of such seemingly insurmountable obstacles, we are looking into the possibility to extract diagnostically relevant information, having particularly in focus the resonances for recognized cancer biomarkers, notably lactate, choline and phosphocholine. Further, we want to see how many of the remaining resonances in the spectra could accurately be identified with clinical reliability as some of them could also be diagnostically relevant. From the mathematical stance, we are here shaking the sharp border between shape and parameter estimators. That border stood around for a long time within nonderivative estimations. However, derivative shape estimations have a chance to tear the border down. Recently, shape estimations by the dFPT have been shown to lead such a trend as this processor could quantify using the time signals encoded from a phantom (a test sample of known content). Further, the present task encounters a number of additional challenges, including a low signal-to-noise ratio (SNR) and, of course, the unknown content of the scanned tissue. Nevertheless, we are determined to find out whether the nonparametric dFPT can deliver the unique quantification-equipped shape estimation and, thus, live up to the expectation of derivative processing: a long-sought simultaneous improvement of resolution and SNR. In every facet of in vivo dNMR, we found that shape estimations by the dFPT has successfully passed the outlined most stringent tests. It begins with transforming itself to a parameter estimator (already with the 3rd and 4th derivatives). It ends with reconstructing some 54 well-isolated resonances. These include the peaks assigned to recognized cancer biomarkers. In particular, a clear separation of choline from phosphocholine is evidenced for the first time by reliance upon the dFPT with its shape estimations alone.


Sign in / Sign up

Export Citation Format

Share Document