scholarly journals Quantum tunneling rate of dilute axion stars close to the maximum mass

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
Pierre-Henri Chavanis



2013 ◽  
Vol 647 ◽  
pp. 918-922
Author(s):  
Hui Ling Li ◽  
Cheng Cheng ◽  
Yan Ge Wu

Extending the Parikh’s method of quantum tunneling radiation, Hawking radiation via tunneling from the cosmological horizon of NUT-Kerr-Newman de Sitter black hole is deeply studied. The result shows that the tunneling rate on the cosmological horizon is related to the change of Bekenstein-Hawking entropy and the real spectrum is not strictly thermal at all, but is consistent with an underlying unitary theory.



1996 ◽  
Vol 65 (10) ◽  
pp. 3157-3166 ◽  
Author(s):  
Toshihiro Tanizawa


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-161-Pr10-163
Author(s):  
H. Matsukawa ◽  
H. Miyake ◽  
M. Yumoto ◽  
H. Fukuyama


2015 ◽  
Vol 9 (3) ◽  
pp. 2470-2475
Author(s):  
Bheku Khumalo

This paper seeks to discuss why information theory is so important. What is information, knowledge is interaction of human mind and information, but there is a difference between information theory and knowledge theory. Look into information and particle theory and see how information must have its roots in particle theory. This leads to the concept of spatial dimensions, information density, complexity, particle density, can there be particle complexity, and re-looking at the double slit experiment and quantum tunneling. Information functions/ relations are discussed.



2019 ◽  
Author(s):  
Vitaly Kuyukov

Quantum tunneling of noncommutative geometry gives the definition of time in the form of holography, that is, in the form of a closed surface integral. Ultimately, the holography of time shows the dualism between quantum mechanics and the general theory of relativity.



Author(s):  
Frank S. Levin

Quantum tunneling, wherein a quanject has a non-zero probability of tunneling into and then exiting a barrier of finite width and height, is the subject of Chapter 13. The description for the one-dimensional case is extended to the barrier being inverted, which forms an attractive potential well. The first application of this analysis is to the emission of alpha particles from the decay of radioactive nuclei, where the alpha-nucleus attraction is modeled by a potential well and the barrier is the repulsive Coulomb potential. Excellent results are obtained. Ditto for the similar analysis of proton burning in stars and yet a different analysis that explains tunneling through a Josephson junction, the connector between two superconductors. The final application is to the scanning tunneling microscope, a device that allows the microscopic surfaces of solids to be mapped via electrons from the surface molecules tunneling into the tip of the STM probe.



1997 ◽  
Vol 79 (6) ◽  
pp. 1126-1129 ◽  
Author(s):  
F. Fominaya ◽  
J. Villain ◽  
P. Gandit ◽  
J. Chaussy ◽  
A. Caneschi


Sign in / Sign up

Export Citation Format

Share Document