Measurement of polarization transfer in Møller scattering of relativistic electrons

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Michał Drągowski ◽  
Jacek Ciborowski ◽  
Marek Adamus ◽  
Joachim Enders ◽  
Yuliya Fritzsche ◽  
...  
Author(s):  
J. H. Butler ◽  
C. J. Humphreys

Electromagnetic radiation is emitted when fast (relativistic) electrons pass through crystal targets which are oriented in a preferential (channelling) direction with respect to the incident beam. In the classical sense, the electrons perform sinusoidal oscillations as they propagate through the crystal (as illustrated in Fig. 1 for the case of planar channelling). When viewed in the electron rest frame, this motion, a result of successive Bragg reflections, gives rise to familiar dipole emission. In the laboratory frame, the radiation is seen to be of a higher energy (because of the Doppler shift) and is also compressed into a narrower cone of emission (due to the relativistic “searchlight” effect). The energy and yield of this monochromatic light is a continuously increasing function of the incident beam energy and, for beam energies of 1 MeV and higher, it occurs in the x-ray and γ-ray regions of the spectrum. Consequently, much interest has been expressed in regard to the use of this phenomenon as the basis for fabricating a coherent, tunable radiation source.


1990 ◽  
Vol 51 (C6) ◽  
pp. C6-451-C6-454
Author(s):  
W. GRÜEBLER ◽  
M. CLAJUS ◽  
P. M. EGUN ◽  
P. HAUTLE ◽  
A. WEBER ◽  
...  

1989 ◽  
Vol 157 (3) ◽  
pp. 389 ◽  
Author(s):  
D.F. Alferov ◽  
Yu.A. Bashmakov ◽  
P.A. Cherenkov

2011 ◽  
Author(s):  
G. G. Manahan ◽  
E. Brunetti ◽  
R. P. Shanks ◽  
M. R. Islam ◽  
B. Ersfeld ◽  
...  

1985 ◽  
Vol 40 (11) ◽  
pp. 1075-1084
Author(s):  
W. T. Sobol ◽  
K.R. Sridharan ◽  
I. G. Cameron ◽  
M. M. Pintar

The frequency dependence of the spin-lattice relaxation time T1 was measured at three temperatures near one of the Zeeman-tunneling level matching resonances for pentamethylbenzene. These measurements are correlated with 71 temperature dependence data from the literature. It is shown that the frequency dependence of the Zeeman-torsion coupling time cannot be explained in terms of the semiclassical perturbation theory using time correlation functions. A three bath polarization transfer model is also employed and the applicability of both models discussed. Zeeman-torsion coupling is further investigated using a saturation sequence and the results are compared with the predictions of the three bath polarization transfer model.


Sign in / Sign up

Export Citation Format

Share Document