Rotating black hole in asymptotic de Sitter space: Perturbation of the space-time with spin fields

1983 ◽  
Vol 28 (6) ◽  
pp. 1291-1297 ◽  
Author(s):  
U. Khanal
1996 ◽  
Vol 11 (18) ◽  
pp. 1467-1473 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
NORISUKE SAKAI ◽  
MASAMICHI SATO

The SL (2, R)/Z WZW orbifold which describes the (2+1)-dimensional black hole approaching anti-de Sitter space asymptotically. We study the 1 → 1 tachyon scattering off the rotating black hole background and calculate the Hawking temperature using the Bogoliubov transformation.


1989 ◽  
Vol 67 (5) ◽  
pp. 501-504
Author(s):  
K. D. Krori ◽  
Ranjana Choudhury ◽  
J. C. Sarmah

In this paper we show that in the Kerr–Newman–de Sitter space–time material particles may move in stable orbits in the equatorial plane (θ = π/2) of the Kerr–Newman black hole.


2018 ◽  
Vol 37 ◽  
pp. 99-109
Author(s):  
M Ilias Hossain

We have explored Hawking non-thermal and purely thermal radiations of Kerr-anti-de Sitter (KAdS) black hole using massive particles tunneling method by taking into account the space time background as dynamical, energy and angular momentum as conserved incorporating the selfgravitation effect of the emitted particles. The results we have obtained for KAdS black hole have shown that the tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum and also the obtaining results for KAdS black hole are accordant with Parikh and Wilczek’s opinion and gives a correction to the Hawking radiation of KAdS black hole.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 99-109


2002 ◽  
Vol 17 (14) ◽  
pp. 887-897 ◽  
Author(s):  
ZHONG-HENG LI

We consider the divergences at all levels for the statistical entropy of gravitational, electromagnetic, neutrino and scalar fields on extremal and nonextremal Reissner–Nordström–de Sitter space–time background in terms of the brick-wall model. We find that entropy of spin fields within a region near coinciding horizons has higher divergence than usual. The earlier result that the entropy of spin fields is proportional to scalar one or the horizon area holds only for the thin region near an isolated horizon, since the spin-dependent divergences exist in all other cases.


2006 ◽  
Vol 15 (06) ◽  
pp. 905-915 ◽  
Author(s):  
YUN ZHANG ◽  
JILIANG JING

We investigate the quasinormal modes (QNMs) of Rarita–Schwinger field perturbations of a Reissner–Nordström black hole in an asymptotically anti-de Sitter space–time. We find that both the real and imaginary parts of the fundamental quasinormal frequencies of the large black hole are the linear functions of the Hawking temperature. The slope of the lines increases as the charge increases, but the imaginary parts decrease as the charge increases. We show that the quasinormal frequencies become evenly spaced for high overtone number n and the spacings are related to the charge and mass of the black hole. We also find that the real parts of the QNMs increase and the imaginary parts decrease as the angular quantum number increases.


2006 ◽  
Vol 45 (12) ◽  
pp. 2428-2436
Author(s):  
Hui-Ling Li ◽  
De-Jiang Qi ◽  
Qing-Quan Jiang ◽  
Shu-Zheng Yang

2014 ◽  
Vol 29 (22) ◽  
pp. 1450118 ◽  
Author(s):  
S. I. Kruglov

We investigate the radiation of spin-1 particles by black holes in (1+1) dimensions within the Proca equation. The process is considered as quantum tunneling of bosons through an event horizon. It is shown that the emission temperature for the Schwarzschild background geometry is the same as the Hawking temperature corresponding to scalar particles emission. We also obtain the radiation temperatures for the de Sitter, Rindler and Schwarzschild–de Sitter space–times. In a particular case when two horizons in Schwarzschild–de Sitter space–time coincides, the Nariai temperature is recovered. The thermodynamical entropy of a black hole is calculated for Schwarzschild–de Sitter space–time having two horizons.


Sign in / Sign up

Export Citation Format

Share Document