scholarly journals Two-body Dirac equation with a scalar linear potential

1988 ◽  
Vol 38 (8) ◽  
pp. 2648-2650 ◽  
Author(s):  
P. Leal Ferreira
2020 ◽  
Vol 35 (20) ◽  
pp. 2050106
Author(s):  
Marco Maceda ◽  
Jairo Villafuerte-Lara

We analyze a modified Dirac equation based on a noncommutative structure in phase space originating from a generalized uncertainty principle with a minimum length. The noncommutative structure induces generalized momenta and contributions to the energy levels of the standard Dirac equation. Applying techniques of perturbation theory, we find the lowest-order corrections to the energy levels and eigenfunctions of the Dirac equation in three dimensions for a spherically symmetric linear potential and for a square-well times triangular potential along one spatial dimension. We find that the corrections due to the noncommutative contributions may be of the same order as the relativistic ones, leading to an upper bound on the parameter fixing the minimum length induced by the generalized uncertainty principle.


2015 ◽  
Vol 70 (9) ◽  
pp. 713-720 ◽  
Author(s):  
Hadi Tokmehdashi ◽  
Ali Akbar Rajabi ◽  
Majid Hamzavi

AbstractIn the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation, which describes the motion of a spin-1/2 particle in 1+1 dimensions for mixed scalar–vector–pseudoscalar linear potential are investigated. The Nikiforov–Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms.


2007 ◽  
Vol 16 (4) ◽  
pp. 897-900 ◽  
Author(s):  
Long Chao-Yun ◽  
Qin Shui -Jie

1999 ◽  
Vol 14 (34) ◽  
pp. 2409-2411 ◽  
Author(s):  
JERROLD FRANKLIN

A simple analytical solution is found to the Dirac equation for the combination of a Coulomb potential with a linear confining potential. An appropriate linear combination of Lorentz scalar and vector linear potentials, with the scalar part dominating, can be chosen to give a simple Dirac wave function. The binding energy depends only on the Coulomb strength and is not affected by the linear potential. The method works for the ground state, or for the lowest state with l=j-1/2, for any j.


2013 ◽  
Vol 04 (07) ◽  
pp. 940-944 ◽  
Author(s):  
Xueling Jiang ◽  
Chaoyun Long ◽  
Shuijie Qin

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Claudio F. Farias ◽  
Edilberto O. Silva

The deformed Dirac equation invariant under the κ-Poincaré-Hopf quantum algebra in the context of minimal and scalar couplings under spin and pseudospin symmetry limits is considered. The κ-deformed Pauli-Dirac Hamiltonian allows us to study effects of quantum deformation in a class of physical systems, such as a Zeeman-like effect, Aharonov-Bohm effect, and an anomalous-like contribution to the electron magnetic moment, between others. In our analysis, we consider the motion of an electron in a uniform magnetic field and interacting with (i) a planar harmonic oscillator and (ii) a linear potential. We verify that the particular choice of a linear potential induces a Coulomb-type term in the equation of motion. Expressions for the energy eigenvalues and wave functions are determined taking into account both symmetry limits. We verify that the energies and wave functions of the particle are modified by the deformation parameter as well as by the element of spin.


Sign in / Sign up

Export Citation Format

Share Document