scholarly journals High-energy parton-parton amplitudes from lattice QCD and the stochastic vacuum model

1998 ◽  
Vol 57 (5) ◽  
pp. 3026-3035 ◽  
Author(s):  
A. F. Martini ◽  
M. J. Menon ◽  
D. S. Thober
Keyword(s):  
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.


2022 ◽  
Author(s):  
Zuoheng Zou ◽  
Yu Meng ◽  
Chuan 刘川 Liu

Abstract We perform a lattice QCD calculation of the $\chi_{c0} \rightarrow 2\gamma$ decay width using a model-independent method which does not require a momentum extrapolation of the corresponding off-shell form factors. The simulation is performed on ensembles of $N_f=2$ twisted mass lattice QCD gauge configurations with three different lattice spacings. After a continuum extrapolation, the decay width is obtained to be $\Gamma_{\gamma\gamma}(\chi_{c0})=3.65(83)_{\mathrm{stat}}(21)_{\mathrm{lat.syst}}(66)_{\mathrm{syst}}\, \textrm{keV}$. Albeit this large statistical error, our result is compatible with the experimental results within 1.3$\sigma$. Potential improvements of the lattice calculation in the future are also discussed. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2018 ◽  
Vol 175 ◽  
pp. 05015
Author(s):  
Ting-Wai Chiu

We perform hybrid Monte Carlo simulation of lattice QCD with Nf = 2+1+1 optimal domain-wall quarks on the 323 × 64 lattice with lattice spacing a ~ 0:06 fm, and generate a gauge ensemble with physical s and c quarks, and pion mass ~ 280 MeV. Using 2-quark (meson) and 3-quark (baryon) interpolating operators, the mass spectra of the lowest-lying states containing s and c quarks (Ds and Ωc) are extracted [1], which turn out in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments. For the five new narrow c states observed by the LHCb Collaboration [2], the lowest-lying Ωc(3000) agrees with our predicted mass 3015(29)(34) MeV of the lowest-lying Ωc with JP = 1/2−. This implies that JP of Ωc(3000) is 1/2−.


2014 ◽  
Vol 29 (17) ◽  
pp. 1430021 ◽  
Author(s):  
Abdel Nasser Tawfik

We review some recent highlights from the applications of statistical–thermal models to different experimental measurements and lattice QCD thermodynamics that have been made during the last decade. We start with a short review of the historical milestones on the path of constructing statistical–thermal models for heavy-ion physics. We discovered that Heinz Koppe formulated in 1948, an almost complete recipe for the statistical–thermal models. In 1950, Enrico Fermi generalized this statistical approach, in which he started with a general cross-section formula and inserted into it, the simplifying assumptions about the matrix element of the interaction process that likely reflects many features of the high-energy reactions dominated by density in the phase space of final states. In 1964, Hagedorn systematically analyzed the high-energy phenomena using all tools of statistical physics and introduced the concept of limiting temperature based on the statistical bootstrap model. It turns to be quite often that many-particle systems can be studied with the help of statistical–thermal methods. The analysis of yield multiplicities in high-energy collisions gives an overwhelming evidence for the chemical equilibrium in the final state. The strange particles might be an exception, as they are suppressed at lower beam energies. However, their relative yields fulfill statistical equilibrium, as well. We review the equilibrium statistical–thermal models for particle production, fluctuations and collective flow in heavy-ion experiments. We also review their reproduction of the lattice QCD thermodynamics at vanishing and finite chemical potential. During the last decade, five conditions have been suggested to describe the universal behavior of the chemical freeze-out parameters. The higher order moments of multiplicity have been discussed. They offer deep insights about particle production and to critical fluctuations. Therefore, we use them to describe the freeze-out parameters and suggest the location of the QCD critical endpoint. Various extensions have been proposed in order to take into consideration the possible deviations of the ideal hadron gas. We highlight various types of interactions, dissipative properties and location-dependences (spatial rapidity). Furthermore, we review three models combining hadronic with partonic phases; quasi-particle model, linear sigma model with Polyakov potentials and compressible bag model.


2019 ◽  
Vol 100 (9) ◽  
Author(s):  
T. J. Hobbs ◽  
Bo-Ting Wang ◽  
Pavel M. Nadolsky ◽  
Fredrick I. Olness
Keyword(s):  

2018 ◽  
Vol 33 (36) ◽  
pp. 1830033 ◽  
Author(s):  
Yong Zhao

Parton distribution functions are key quantities for us to understand the hadronic structures in high-energy scattering, but they are difficult to calculate from lattice QCD. Recent years have seen fast development of the large-momentum effective theory which allows extraction of the x-dependence of parton distribution functions from a quasi-parton distribution function that can be directly calculated on lattice. The extraction is based on a factorization formula for the quasi-parton distribution function that has been derived rigorously in perturbation theory. A systematic procedure that includes renormalization, perturbative matching, and power corrections has been established to calculate parton distribution functions. Latest progress from lattice QCD has shown promising signs that it will become an effective tool for calculating parton physics.


2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Mattia Dalla Brida

AbstractNon-perturbative scale-dependent renormalization problems are ubiquitous in lattice QCD as they enter many relevant phenomenological applications. They require solving non-perturbatively the renormalization group equations for the QCD parameters and matrix elements of interest in order to relate their non-perturbative determinations at low energy to their high-energy counterparts needed for phenomenology. Bridging the large energy separation between the hadronic and perturbative regimes of QCD, however, is a notoriously difficult task. In this contribution we focus on the case of the QCD coupling. We critically address the common challenges that state-of-the-art lattice determinations have to face in order to be significantly improved. In addition, we review a novel strategy that has been recently put forward in order to solve this non-perturbative renormalization problem and discuss its implications for future precision determinations. The new ideas exploit the decoupling of heavy quarks to match $${N_{\mathrm{f}}}$$ N f -flavor QCD and the pure Yang–Mills theory. Through this matching the computation of the non-perturbative running of the coupling in QCD can be shifted to the computationally much easier to solve pure-gauge theory. We shall present results for the determination of the $$\varLambda $$ Λ -parameter of $${N_{\mathrm{f}}}=3$$ N f = 3 -flavor QCD where this strategy has been applied and proven successful. The results demonstrate that these techniques have the potential to unlock unprecedented precision determinations of the QCD coupling from the lattice. The ideas are moreover quite general and can be considered to solve other non-perturbative renormalization problems.


1984 ◽  
Vol 75 ◽  
pp. 599-602
Author(s):  
T.V. Johnson ◽  
G.E. Morfill ◽  
E. Grun

A number of lines of evidence suggest that the particles making up the E-ring are small, on the order of a few microns or less in size (Terrile and Tokunaga, 1980, BAAS; Pang et al., 1982 Saturn meeting; Tucson, AZ). This suggests that a variety of electromagnetic and plasma affects may be important in considering the history of such particles. We have shown (Morfill et al., 1982, J. Geophys. Res., in press) that plasma drags forces from the corotating plasma will rapidly evolve E-ring particle orbits to increasing distance from Saturn until a point is reached where radiation drag forces acting to decrease orbital radius balance this outward acceleration. This occurs at approximately Rhea's orbit, although the exact value is subject to many uncertainties. The time scale for plasma drag to move particles from Enceladus' orbit to the outer E-ring is ~104yr. A variety of effects also act to remove particles, primarily sputtering by both high energy charged particles (Cheng et al., 1982, J. Geophys. Res., in press) and corotating plasma (Morfill et al., 1982). The time scale for sputtering away one micron particles is also short, 102 - 10 yrs. Thus the detailed particle density profile in the E-ring is set by a competition between orbit evolution and particle removal. The high density region near Enceladus' orbit may result from the sputtering yeild of corotating ions being less than unity at this radius (e.g. Eviatar et al., 1982, Saturn meeting). In any case, an active source of E-ring material is required if the feature is not very ephemeral - Enceladus itself, with its geologically recent surface, appears still to be the best candidate for the ultimate source of E-ring material.


Sign in / Sign up

Export Citation Format

Share Document