scholarly journals Imprint of gravitational waves in models dominated by a dynamical cosmic scalar field

1998 ◽  
Vol 57 (10) ◽  
pp. 6057-6064 ◽  
Author(s):  
R. R. Caldwell ◽  
Paul J. Steinhardt
2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2017 ◽  
Vol 26 (02) ◽  
pp. 1750003 ◽  
Author(s):  
Basem Ghayour

The generated relic gravitational waves underwent several stages of evolution of the universe such as inflation and reheating. These stages were affected on the shape of spectrum of the waves. As well known, at the end of inflation, the scalar field [Formula: see text] oscillates quickly around some point where potential [Formula: see text] has a minimum. The end of inflation stage played a crucial role on the further evolution stages of the universe because particles were created and collisions of the created particles were responsible for reheating the universe. There is a general range for the frequency of the spectrum [Formula: see text])[Formula: see text]Hz. It is shown that the reheating temperature can affect on the frequency of the spectrum as well. There is constraint on the temperature from cosmological observations based on WMAP-9 and Planck. Therefore, it is interesting to estimate allowed value of frequencies of the spectrum based on general range of reheating temperature like few MeV [Formula: see text] GeV, WMAP-9 and Planck data then compare the spectrum with sensitivity of future detectors such as LISA, BBO and ultimate-DECIGIO. The obtained results of this comparison give us some more chance for detection of the relic gravitational waves.


2005 ◽  
Vol 20 (02) ◽  
pp. 127-134 ◽  
Author(s):  
B. K. SAHOO

The spectra of relic gravitational waves produced as a result of cosmological expansion of the inflationary models are derived in Brans–Dicke (BD) theory of gravity. The time dependence of the very early Hubble parameter and matter energy density are derived from frequency-dependent spectrum of relic gravitational waves. Also it is found that Brans–Dicke scalar field contributes to the energy density of relic gravitons.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747021
Author(s):  
Kazuharu Bamba

We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.


2015 ◽  
Vol 24 (04) ◽  
pp. 1541005
Author(s):  
James B. Dent

A primordial gravitational wave background is a hallmark of inflationary cosmology. The recent announcement made by the BICEP2 collaboration of a possible measurement of B-mode polarization of the CMB on degree scales has produced an abundance of ideas and speculations on how such a signal constrains the inflationary paradigm, or possible alternative mechanisms of gravitational wave production. Here the possibility of a contribution to the gravitational wave background from the relaxation of a scalar field after a global phase transition is reviewed. The general contribution to the overall power is shown, and it is then demonstrated that if the BICEP2 result were to hold, this mechanism could at best produce a very small fraction of the measured tensor power.


1965 ◽  
Vol 20 (4) ◽  
pp. 495-497
Author(s):  
G. Braunss

A brief consideration of the problem of gravitational waves is given on the basis of the following assumption: The components of the metric tensor are functionals of a field by which, in the sense of HEISENBERG’S nonlinear theory, all other fields resp. the corresponding interactions can be deduced. For the sake of mathematical simplicity a scalar field Φ (noncharged bosons) is considered instead of a spinor field. The condition gmn=gmn (Φ) resp. Rmn = Rmn (Φ) leads to the statement that the concept of a free gravitational wave, i. e. a wave which is a solution of Rmn=0 or Rklmn = 0, cannot be accepted. A free wave is here by definition a wave which is so far from the origin that one can neglect in the field eqs. all terms which represent a strong interaction. A comparison with a spinor field leads, with regard to this definition, to the conclusion that a free wave may be considered as a neutrino wave and gravitation as the weakest interaction possible of neutrino fields.


2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Darío Núñez ◽  
Juan Carlos Degollado ◽  
Claudia Moreno

2003 ◽  
Vol 12 (04) ◽  
pp. 697-712 ◽  
Author(s):  
M. A. CLAYTON ◽  
J. W. MOFFAT

Predictions of the CMB spectrum from a bimetric gravity theory (BGT)1 are presented. The initial inflationary period in BGT is driven by a vanishingly small speed of gravitational waves vg in the very early universe. This initial inflationary period is insensitive to the choice of scalar field potential and initial values of the scalar field. After this initial period of inflation, vg will increase rapidly and the effects of a potential will become important. We show that a quadratic potential introduced into BGT yields an approximately flat spectrum with inflation parameters: ns=0.98, nt=-0.027, αs=-3.2×10-4 and αt=-5.0×10-4, with r ≥ 0.014.


1998 ◽  
Vol 13 (08) ◽  
pp. 1201-1211 ◽  
Author(s):  
Y. ENGINER ◽  
M. HORTAÇSU ◽  
N. ÖZDEMIR

Quantum fluctuations for a massless scalar field in the background metric of spherical implusive gravitational waves propagating through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Sunil Choudhary ◽  
Nicolas Sanchis-Gual ◽  
Anshu Gupta ◽  
Juan Carlos Degollado ◽  
Sukanta Bose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document