1020 eVcosmic-ray and particle physics with kilometer-scale neutrino telescopes

2001 ◽  
Vol 63 (3) ◽  
Author(s):  
J. Alvarez-Muñiz ◽  
F. Halzen
2005 ◽  
Vol 13 ◽  
pp. 949-950
Author(s):  
Francis Halzen

AbstractSolving the century-old puzzle of how and where cosmic rays are accelerated mostly drives the design of high-energy neutrino telescopes. It calls, along with a diversity of science goals reaching particle physics, astrophysics and cosmology, for the construction of a kilometer-scale neutrino detector. This led to the IceCube concept to transform a kilometer cube of transparent Antarctic Ice, one mile below the South Pole, into a neutrino telescope.


2021 ◽  
Vol 52 (1) ◽  
pp. 19-21
Author(s):  
Véronique Van Elewyck ◽  
João Coelho ◽  
Edouard Kaminski ◽  
Lukas Maderer

Neutrinos, the lightest entities of the Standard Model of particle physics, can traverse matter like no other known particle. The advent of a new generation of neutrino telescopes is turning these elusive messengers into a new probe to investigate the structure and composition of the deep Earth.


2000 ◽  
Vol 17 (1) ◽  
pp. 13-17
Author(s):  
Jenni Adams

AbstractIt is hoped that in the near future neutrino astronomy will reach throughout and beyond our galaxy and make measurements relevant to cosmology, astrophysics, cosmic-ray and particle physics. The construction of a high-energy neutrino telescope requires a huge volume of very transparent, deeply buried material such as ocean water or ice, which acts as the medium for detecting the particles. I will describe two experiments using Antarctic ice as this medium: the AMANDA experiment employing photomultiplier tubes and RICE utilising radio receivers.


Author(s):  
L. A. Fusco ◽  
F. Versari

AbstractThe composition in terms of nuclear species of the primary cosmic ray flux is largely uncertain in the knee region and above, where only indirect measurements are available. The predicted fluxes of high-energy leptons from cosmic ray air showers are influenced by this uncertainty. Different models have been proposed. Similarly, these uncertainties affect the measurement of lepton fluxes in very large-volume neutrino telescopes. Uncertainties in the cosmic ray interaction processes, mainly deriving from the limited amount of experimental data covering the particle physics at play, could also produce similar differences in the observable lepton fluxes and are affected as well by large uncertainties. In this paper we analyse how considering different models for the primary cosmic ray composition affects the expected rates in the current generation of very large-volume neutrino telescopes (ANTARES and IceCube). This is tested comparing two possible models of cosmic ray composition, but the same procedure can be expanded to different possible combinations of cosmic ray abundances. We observe that a certain degree of discrimination between composition fits can be already achieved with the current IceCube data sample, even though in a model-dependent way. The expected improvements in the energy reconstruction achievable with the next-generation neutrino telescopes is be expected to make these instruments more sensitive to the differences between models.


2019 ◽  
Vol 209 ◽  
pp. 01009 ◽  
Author(s):  
Marta Colomer Molla ◽  
Massimiliano Lincetto

Core Collapse Supernovae (CCSN) are explosive phenomena that may occur at the end of the life of massive stars, releasing over 99% of the energy through neutrino emission with energies on the 10 MeV scale. While the explosion mechanism is not fully understood, neutrinos are believed to play an important role. The only detection as of today are the 24 neutrinos from supernova SN1987A. The observation of the next Galactic CCSN will lead to important breakthroughs across the fields of astrophysics, nuclear and particle physics. For a Galactic CCSN, the KM3NeT ORCA and ARCA detectors in the Mediterranean Sea will observe a significant number of neutrinos via the detection of Cherenkov light, mostly induced by Inverse Beta Decay (IBD) interactions in sea water. The detection of coincident photons by the 31 photomultipliers of the KM3NeT digital optical modules (DOMs) allows to separate the signal from the optical background sources. The KM3NeT detection sensitivity to a Galactic CCSN and the potential to resolve the neutrino light-curve have been estimated exploiting detailed Monte-Carlo simulations. Specific criteria are proposed for the online triggering and the participation in the SNEWS network.


2005 ◽  
Vol 20 (06) ◽  
pp. 1168-1179 ◽  
Author(s):  
THOMAS J. WEILER

Over the next decade or two, neutrino telescopes will map out the neutrino sky, analogous to the way the electromagnetic sky has been mapped for centuries. Like light and unlike cosmic-rays, the neutrinos will point back to their sources. Unlike light, the neutrinos are not attenuated at high energies and so will allow us to see farther into space, and deeper into sources. We illustrate with specific examples the promise which neutrino astronomy at energies from a TeV to a ZeV holds to study astrophysics and particle physics.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


Sign in / Sign up

Export Citation Format

Share Document