scholarly journals Influence of the photonuclear effect on electron-neutrino-induced electromagnetic cascades under the Landau-Pomeranchuk-Migdal regime in standard rock

2012 ◽  
Vol 86 (3) ◽  
Author(s):  
Mathieu Tartare ◽  
Didier Lebrun ◽  
François Montanet
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


2010 ◽  
Vol 100 (1) ◽  
pp. 172-195 ◽  
Author(s):  
H. Cadet ◽  
P.-Y. Bard ◽  
A. Rodriguez-Marek
Keyword(s):  

2009 ◽  
Vol 103 (26) ◽  
Author(s):  
P. Adamson ◽  
C. Andreopoulos ◽  
K. E. Arms ◽  
R. Armstrong ◽  
D. J. Auty ◽  
...  

1978 ◽  
Vol 56 (4) ◽  
pp. 399-402 ◽  
Author(s):  
Charles Picciotto

Double-beta decay half-lives are calculated with the assumption that the emission of electron–neutrino pairs occurs via a Δ(1232) resonance in the nucleus. Numerical results are obtained with a quark model for the hadrons. By assuming that total rates are produced by a combination of neutrinoless and two-nuetrino modes, a lepton-nonconservation parameter η ~ 10−5 is obtained. Although the actual modes of decay and underlying mechanisms are undetermined, the present calculation can be used to obtain an upper limit for the probability admixture of resonances in the nucleus of a few percent.


1969 ◽  
Vol 63 (1) ◽  
pp. 354-366 ◽  
Author(s):  
P. Cazzola ◽  
A. Saggion
Keyword(s):  

2016 ◽  
Vol 31 (38) ◽  
pp. 1650207 ◽  
Author(s):  
M. Sruthilaya ◽  
Srinu Gollu

To accommodate the recently observed nonzero reactor mixing angle [Formula: see text], we consider the lepton mixing matrix as tri-bimaximal mixing (TBM) form in the leading order along with a perturbation in neutrino sector. The perturbation is taken to be a rotation in 23 plane followed by a rotation in 13 plane, i.e. [Formula: see text]. We obtain the allowed values of the parameters [Formula: see text], [Formula: see text] and [Formula: see text], which can accommodate all the observed mixing angles consistently and calculate the phenomenological observables such as the Dirac CP violating phase [Formula: see text], Jarlskog invariant [Formula: see text], effective Majorana mass [Formula: see text] and [Formula: see text], the electron neutrino mass. We find that [Formula: see text] can take any values between [Formula: see text] and [Formula: see text] and [Formula: see text] always comes below its experimental upper limit.


2021 ◽  
Author(s):  
Emir Ashursky

To date the recognition of universal, a priori inherent in them connection between the objects of the world around us is quite rightly considered almost an accomplished fact. But on what laws do these or those sometimes rather variegated systems function in live and inert nature (including - in modern computer clusters)? Where are the origins of their self-organization activity lurked: whether at the level of still hypothetical quantum-molecular models, finite bio-automata or hugely fashionable now artificial neural networks? Answers to all these questions if perhaps will ever appear then certainly not soon. That is why the bold innovative developments presented in following article are capable in something, possibly, even to refresh the database of informatics so familiar to many of us. And moreover, in principle, the pivotal idea developed here, frankly speaking, is quite simple in itself: if, for example, the laws of the universe are one, then all the characteristic differences between any evolving objects should be determined by their outwardly-hidden informative (or, according to author’s terminology - “mental") rationale. By the way, these are not at all empty words, as it might seem at first glance, because they are fully, where possible, supported with the generally accepted physical & mathematical foundation here. So as a result, the reader by himself comes sooner or later to the inevitable conclusion, to wit: only the smallest electron-neutrino ensembles contain everything the most valuable and meaningful for any natural system! At that even no matter, what namely global outlook paradigm we here hold...


2019 ◽  
Vol 21 ◽  
pp. 4
Author(s):  
P. G. Giannaka ◽  
T. S. Kosmas

Nuclear electron capture posses prominent position among other weak interaction processes occuring in explosive nucleosynthesis. In particular, this process plays important role in the core-colapse of massive stars by modifying the electron to baryon ratio Ye. From a nuclear theory point of view, such processes may be studied by using the same nuclear methods (e.g. the quasi-particle random phase approximation, QRPA), employed in the present work with these used for the one-body charge changing nuclear reactions (β-decay modes, charged-current electron-neutrino absorption by nuclei, etc). In this work we calculate e−-capture cross sections on 56Fe using two different approaches. At first, original cross section calculations are perfored by using the pn-QRPA method considering all the accessible transitions of the final nucleus 56Mn. Secondly, we evaluate the Gamow-Teller strength distributions and obtain the cross sections at the limit of zero-momentum transfer. The agreement between the two methods is very good.


Sign in / Sign up

Export Citation Format

Share Document