scholarly journals Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERνA experiments

2016 ◽  
Vol 93 (7) ◽  
Author(s):  
C. Wilkinson ◽  
R. Terri ◽  
C. Andreopoulos ◽  
A. Bercellie ◽  
C. Bronner ◽  
...  
2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Igor D. Kakorin ◽  
Konstantin S. Kuzmin ◽  
Vadim A. Naumov

AbstractWe suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axial-vector mass of the nucleon, governed by a couple of adjustable parameters, one of which is the conventional charged-current axial-vector mass. The inelastic background contributions and final-state interactions are therewith simulated using GENIE 3 neutrino event generator. An extensive comparison of our calculations with earlier and current accelerator CCQE and CCQE-like data for different nuclear targets shows good or at least qualitative overall agreement over a wide energy range. We also discuss some problematical issues common to several competing contemporary models of the CCQE (anti)neutrino–nucleus scattering and to the current neutrino interaction generators.


Author(s):  
K Abe ◽  
R Akutsu ◽  
A Ali ◽  
C Andreopoulos ◽  
L Anthony ◽  
...  

Abstract We report a measurement of the flux-integrated $\nu_{\mu}$ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are $\sigma^{\rm{H_{2}O}}_{\rm{CC}} = (0.840\pm 0.010(\mathrm{stat.})^{+0.10}_{-0.08}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, $\sigma^{\rm{CH}}_{\rm{CC}} = (0.817\pm 0.007(\mathrm{stat.})^{+0.11}_{-0.08}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, and $\sigma^{\rm{Fe}}_{\rm{CC}} = (0.859\pm 0.003(\mathrm{stat.})^{+0.12}_{-0.10}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, respectively, for a restricted phase space of induced muons: $\theta_{\mu}<45^{\circ}$ and $p_{\mu}>$0.4 GeV/$c$ in the laboratory frame. The measured cross section ratios are ${\sigma^{\rm{H_{2}O}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}} = 1.028\pm 0.016(\mathrm{stat.})\pm 0.053(\mathrm{syst.})$, ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{H_{2}O}}_{\rm{CC}}} = 1.023\pm 0.012(\mathrm{stat.})\pm 0.058(\mathrm{syst.})$, and ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}} = 1.049\pm 0.010(\mathrm{stat.})\pm 0.043(\mathrm{syst.})$. These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. A. Acero ◽  
P. Adamson ◽  
G. Agam ◽  
L. Aliaga ◽  
T. Alion ◽  
...  

AbstractThe two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.


Author(s):  
Luis Alvarez-Ruso ◽  
Costas Andreopoulos ◽  
Adi Ashkenazi ◽  
Christopher Barry ◽  
Steve Dennis ◽  
...  

AbstractThe release of GENIE v3.0.0 was a major milestone in the long history of the GENIE project, delivering several alternative comprehensive neutrino interaction models, improved charged-lepton scattering simulations, a range of beyond the Standard Model simulation capabilities, improved experimental interfaces, expanded core framework capabilities, and advanced new frameworks for the global analysis of neutrino scattering data and tuning of neutrino interaction models. Steady progress continued following the release of GENIE v3.0.0. New tools and a large number of new physics models, comprehensive model configurations, and tunes have been made publicly available and planned for release in v3.2.0. This article highlights some of the most recent technical and physics developments in the GENIE v3 series.


2008 ◽  
Vol 17 (3) ◽  
pp. 93-98
Author(s):  
Lynn E. Fox

Abstract Linguistic interaction models suggest that interrelationships arise between structural language components and between structural and pragmatic components when language is used in social contexts. The linguist, David Crystal (1986, 1987), has proposed that these relationships are central, not peripheral, to achieving desired clinical outcomes. For individuals with severe communication challenges, erratic or unpredictable relationships between structural and pragmatic components can result in atypical patterns of interaction between them and members of their social communities, which may create a perception of disablement. This paper presents a case study of a woman with fluent, Wernicke's aphasia that illustrates how attention to patterns of linguistic interaction may enhance AAC intervention for adults with aphasia.


Sign in / Sign up

Export Citation Format

Share Document